
Begin
to Code
with
Python

Rob Miles

BEGIN TO CODE WITH PYTHON
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2018 by Pearson Education, Inc.

ISBN-13: 978-1-5093-0452-3
ISBN-10: 1-5093-0452-5

Library of Congress Control Number: 2017958202
1 17

http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a glance
Part 1: Programming fundamentals

Chapter 1 Starting with Python . 2

Chapter 2 Python and Programming . 16

Chapter 3 Python program structure . 44

Chapter 4 Working with variables . 72

Chapter 5 Making decisions in programs . 104

Chapter 6 Repeating actions with loops . 140

Chapter 7 Using functions to simplify programs 170

Chapter 8 Storing collections of data . 210

Part 2: Advanced programming
Chapter 9 Use classes to store data . 264

Chapter 10 Use classes to create active objects 308

Chapter 11 Object-based solution design . 372

Chapter 12 Python applications . 438

Part 3: Useful Python (Digital-only)

Chapter 13 Python and Graphical User Interfaces 488

Chapter 14 Python programs as network clients 548

Chapter 15 Python programs as network servers 570

Chapter 16 Create games with Pygame . 592

The chapter PDF files for this Part are available at
https://aka.ms/BeginCodePython/downloads.

https://aka.ms/BeginCodePython/downloads

Contents
Introduction . xviii

Part 1: Programming fundamentals

1 Starting with Python . 2
What is Python? . 4

Python origins . 5
Python versions . 5

Build a place to work with Python . 6
Get the tools . 6
Python for Windows PC . 7

Start Python . 10
What you have learned . 14

2 Python and Programming . 16
What makes a programmer . 18

Programming and party planning . 18

http://aka.ms/tellpress

Programming and problems . 19
Programmers and people . 21

Computers as data processors . 22
Machines and computers and us . 22
Programs as data processors . 24
Python as a data processor . 25

Data and information . 31
Work with Python functions . 36

The ord function . 36
The chr function . 38
Investigate data storage using bin . 39

What you have learned . 41

3 Python program structure . 44
Write your first Python program . 46

Run Python programs using IDLE . 46
Get program output using the print function 51

Use Python libraries . 57
The random library . 57
The time library . 60

Python comments . 61
Code samples and comments . 62

Run Python from the desktop . 63
Delay the end of the program . 64

Adding some snaps . 64
Adding the Pygame library . 65
Snaps functions . 66

What you have learned . 70

4 Working with variables . 72
Variables in Python . 74

Python names . 76
Working with text . 79

Marking the start and end of strings 81
Escape characters in text . 82
Read in text using the input function 84

Working with numbers . 87
Convert strings into integer values . 87
Whole numbers and real numbers . 89
Real numbers and floating-point numbers 90
Convert strings into floating-point values 95
Perform calculations . 96
Convert between float and int . 98

Weather snaps . 101
What you have learned . 102

5 Making decisions in programs 104
Boolean data . 106

Create Boolean variables . 106
Boolean expressions . 109
Comparing values . 111
Boolean operations . 114

The if construction . 118
Nesting if conditions . 127
Working with logic . 128

Use decisions to make an application . 129
Design the user interface . 129
Implement a user interface . 130

Testing user input . 132
Complete the program . 133

Input snaps . 134
What you have learned . 138

6 Repeating actions with loops 140
The while construction . 142

Repeat a sequence of statements using while 142
Handling invalid user entry . 147
Detect invalid number entry using exceptions 152
Exceptions and number reading . 154
Handling multiple exceptions . 156
Break out of loops . 157
Return to the top of a loop with continue 158
Count a repeating loop . 159

The for loop construction . 162
Make a digital clock using snaps . 167
What you have learned . 168

7 Using functions to simplify programs 170
What makes a function? . 172

Give information to functions using parameters 176
Return values from function calls . 185

Build reusable functions . 193
Create a text input function . 193
Add help information to functions . 195
Create a number input function . 197

Convert our functions into a Python module 201
Use the IDLE debugger . 202

What you have learned . 208

8 Storing collections of data 210
Lists and tracking sales . 212

Limitations of individual variables . 214
Lists in Python . 215
Read in a list . 218
Display a list using a for loop . 219

Refactor programs into functions . 221
Create placeholder functions . 224
Create a user menu . 225

Sort using bubble sort . 227
Initialize a list with test data . 228
Sort a list from high to low . 228
Sort a list from low to high . 234
Find the highest and lowest sales values 235
Evaluate total and average sales . 236
Complete the program . 237

Store data in a file . 238
Write into a file . 239
Write the sales figures . 242
Read from a file . 244
Read the sales figures . 246
Deal with file errors . 247

Store tables of data . 251
Use loops to work with tables . 253

Use lists as lookup tables . 255
Tuples . 256
What you have learned . 259

Part 2: Advanced programming

9 Use classes to store data . 264
Make a tiny contacts app . 266

Make a prototype . 267
Store contact details in separate lists 269
Use a class to store contact details . 272
Use the Contact class in the Tiny
Contacts program . 275
Edit contacts . 278
Save contacts in a file using pickle . 289
Load contacts from a file using pickle 292
Add save and load to Tiny Contacts 293
Set up class instances . 294

Dictionaries . 300
Create a dictionary . 300
Dictionary management . 302
Return a dictionary from a function 303
Use a dictionary to store contacts . 303

What you have learned . 305

10 Use classes to create active objects 308
Create a Time Tracker . 310

Add a data attribute to a class . 311
Create a cohesive object . 312
Create method attributes for a class 314
Add validation to methods . 316
Protect a data attribute against damage 328
Protected methods . 331

Create class properties . 332
Evolve class design . 337

Manage class versions . 340
The __str__ method in a class . 346

Python string formatting . 348
Session tracking in Time Tracker . 350

The Python map function . 355
The Python join method . 361

Make music with Snaps . 363
What you have learned . 368

11 Object-based solution design 372
Fashion Shop application . 374

Application data design . 376
Object-oriented design . 376
Creating superclasses and subclasses 379
Data design recap . 396
Implement application behaviors . 405
Objects as components . 409

Create a FashionShop component . 410
Create a user interface component 417

Design with classes . 421
Python sets . 422

Sets and tags . 426
Sets versus class hierarchies . 431

What you have learned . 434

12 Python applications . 438
Advanced functions . 440

References to functions . 440
Use lambda expressions . 446
Iterator functions and the yield statement 451
Functions with an arbitrary number of arguments 457

Modules and packages . 460
Python modules . 460
Add a readme function to BTCInput 461
Run a module as a program . 462
Detect whether a module is executed as a program 463
Create a Python package . 464
Import modules from packages . 466

Program testing . 470
The Python assert statement . 471
The Python unittest module . 472
Create tests . 476

View program documentation . 478
What you have learned . 483

Part 3: Useful Python (Digital-only)

13 Python and Graphical User Interfaces 488
Visual Studio Code . 490

Install Visual Studio Code . 490
Install the Python Extension in Visual Studio Code 491
Create a project folder . 492
Create a program file . 493
Debug a program . 494
Other Python editors . 499

Create a Graphical User Interface with Tkinter 499
Create a graphical application . 506
Lay out a grid . 507
Create an event handler function . 510
Create a mainloop . 511
Handle errors in a graphical user interface 512
Display a message box . 514
Draw on a Canvas . 518
Tkinter events . 522
Create a drawing program . 523
Enter multi-line text . 526
Group display elements in frames . 528
Create an editable StockItem using a GUI 529

The chapter PDF files for this Part are available at
https://aka.ms/BeginCodePython/downloads.

https://aka.ms/BeginCodePython/downloads

Create a Listbox selector . 537
An application with a graphical user interface 544

What you have learned . 546

14 Python programs as network clients 548
Computer networking . 550
Consume the web from Python . 562

Read a webpage . 562
Use web-based data . 562

What you have learned . 567

15 Python programs as network servers 570
Create a web server in Python . 572

A tiny socket-based server . 572
Python web server . 577
Serve webpages from files . 579
Get information from web users . 584

Host Python applications on the web . 590
What you have learned . 590

16 Create games with Pygame 592
Getting started with pygame . 594
Draw images with pygame . 601

Image file types . 601
Load an image into a game . 602
Make an image move . 604

Get user input from pygame . 606

Create game sprites . 609
Add a player sprite . 614
Control the player sprite . 617
Add a Cracker sprite . 618
Add lots of sprite instances . 619
Catch the crackers . 620
Add a killer tomato . 625

Complete the game . 629
Add a start screen . 629
End the game . 634
Score the game . 635

What you have learned . 636

Index

Introduction
Programming is the most creative thing you can learn how to do. Why? If you learn to
paint, you can create pictures. If you learn to play the violin, you can make music. But
if you learn to program, you can create entirely new experiences (and you can make
pictures and music too, if you wish). Once you’ve started on the programming path,
there’s no limit to where you can go. There are always new devices, technologies, and
marketplaces where you can use your programming skills.

Think of this book as your first step on a journey to programming enlightenment. The
best journeys are undertaken with a destination in mind, and the destination of this
journey is “usefulness.” By the end of this book, you will have the skills and knowledge
to write useful programs.

However, before we begin, a small word of warning. Just as a guide would want to tell
you about the lions, tigers, and crocodiles that you might encounter on a safari, I must
tell you that our journey might not be all smooth going. Programmers must learn to
think slightly differently about problem solving, because a computer just doesn’t work
the same way humans do. Humans can do complex things rather slowly. Computers
can do simple things very quickly. It is the programmer’s job to harness the simple
abilities of the machine to solve complicated problems. This is what you’ll learn to do.

The key to success as a programmer is much the same as for many other endeavors.
To become a world-renowned violin player, you will have to practice a lot. The same
is true for programming. You must spend a lot of time working on your programs to
acquire code-writing skills. However, the good news is that just as a violin player really
enjoys making the instrument sing, making a computer do exactly what you want
turns out to be a very rewarding experience. It gets even more enjoyable when you
see other people using programs that you’ve written and finding them useful and
fun to use.

How this book fits together
I’ve organized this book in three parts. Each part builds on the previous one with the
aim of turning you into a successful programmer. We start off considering the low-
level programming instructions that programs use to tell the computer what to do,
and we finish by looking at professional software construction.

Part 1: Programming fundamentals
The first part gets you started. It points you to where you’ll install and use the pro-
gramming tools that you’ll need to begin coding, and it introduces you to the fun-
damental elements of the Python programming language. You’ll come to grips with
writing your first programs and learn all the fundamental code constructions that
underpin all programs. You’ll also find out where Python fits in the great scheme of
programming languages, and what this means for you as a programmer.

Part 2: Advanced programming
Part 2 describes the features of the Python programming language used to create and
structure more complex applications. It shows you how to break large programs into
smaller elements and how you can create custom data types that reflect the specific
problem being solved. You’ll also discover how to design, test, and document your
Python applications.

Part 3: Useful Python
Once you’ve learned how to make your own programs, the next step is to learn how
to use code written by other people. An important advantage of Python is the wealth
of software libraries available for users of the language. In Part 3, you’ll explore a
number of these libraries and find out how you can use them to create applications
with graphical user interfaces, how Python programs can act as clients and servers in
network applications, and, finally, create engaging games.

The third part of the book is provided as a downloadable document that you can have
open on your desktop as you experiment with the demonstration programs and cre-
ate applications of your own. The chapter PDF files for this Part are available at

https://aka.ms/BeginCodePython/downloads

How you will learn
In each chapter, I will tell you a bit more about programming. I’ll show you how
to do something, and then I’ll invite you to make something of your own by using
what you’ve learned. You’ll never be more than a page or so away from doing some-
thing or making something unique and personal. After that, it’s up to you to make
something amazing!

https://aka.ms/BeginCodePython/downloads

You can read the book straight through if you like, but you’ll learn much more if you
slow down and work with the practical parts along the way. Like learning to ride a
bicycle, you’ll learn by doing. You must put in the time and practice to learn how to do it.
But this book will give you the knowledge and confidence to try your hand at program-
ming, and it will also be around to help you if your programming doesn’t turn out as you
expected. Here are some elements in the book that will help you learn by doing:

Yes, the best way to learn things is by doing, so you’ll find “Make Something Happen” ele-
ments throughout the text. These elements offer ways for you to practice your programming
skills. Each starts with an example and then introduces some steps you can try on your own.
Everything you create will run on Windows, macOS, or Linux.

MAKE SOMETHING HAPPEN

A great way to learn how to program is by looking at code written by others and working out
what it does (and sometimes why it doesn’t do what it should). This book contains over 150
sample programs for you to examine. In this book’s “Code Analysis” challenges, you’ll use your
deductive skills to figure out the behavior of a program, fix bugs, and suggest improvements.

CODE ANALYSIS

If you don’t already know that programs can fail, you’ll learn this hard lesson soon after you
begin writing your first program. To help you deal with this in advance, I’ve included “What
Could Go Wrong?” elements, which anticipate problems you might have and provide solu-
tions to those problems. For example, when I introduce something new, I’ll sometimes spend
some time considering how it can fail and what you need to worry about when you use the
new feature.

WHAT COULD GO WRONG

PROGRAMMER’S POINTS

I’ve spent a lot of time teaching programming. But I’ve also written many programs and sold a few to
paying customers. I’ve learned some things the hard way that I really wish I’d known at the start. The aim
of “Programmer’s Points” is to give you this information up front so that you can start taking a profes-
sional view of software development as you learn how to do it.

“Programmer’s Points” cover a wide range of issues, from programming to people to philosophy. I strongly
advise you to read and absorb these points carefully—they can save you a lot of time in the future!

Software and hardware
You’ll need a computer and some software to work with the programs in this book. I’m
afraid I can’t provide you with a computer, but in the first chapter you’ll find out where
you can get the Python tools and an application called Visual Studio Code that you’ll
learn to use when we start creating larger applications.

Using a PC or laptop
You can use Windows, macOS, or Linux to create and run the Python programs in the
text. Your PC doesn’t have to be particularly powerful, but these are the minimum
specifications I’d recommend:

 ● A 1 GHz or faster processor, preferably an Intel i5 or better.

 ● At least 4 gigabytes (GB) of memory (RAM), but preferably 8 GB or more.

 ● 256 GB hard drive space. (The full Python and Visual Studio Code installations take
about 1 GB of hard drive space.)

There are no specific requirements for the graphics display, although a higher-
resolution screen will enable you to see more when writing your programs.

Using a mobile device
You can write and run Python programs on a mobile phone or tablet. If you have
an Apple device running iOS, I recommend the Pythonista app. If you’re using an
Android device, look at the Pyonic Python 3 interpreter.

Using a Raspberry Pi
If you want to get started in the most inexpensive way possible, you can use a Rasp-
berry Pi running the Raspbian operating system, which has Python 3.6 and the IDLE
development environment built in.

Downloads
In every chapter in this book, I’ll demonstrate and explain programs that teach you
how to begin to program—and that you can then use to create programs of your own.
You can download this book’s sample code from the following page:

https://aka.ms/BeginCodePython/downloads

Follow the instructions you’ll find in Chapter 1 to install the sample programs and code.

Acknowledgments
I would like to thank Laura Norman for giving me a chance to write this book, Dan
Foster and Rick Kughen for putting up with my prose and knocking it into shape,
John Ray for astute and constructive technical insights, and Tracey Croom and Becky
Winter for making it all look so nice. I’d also like to say thanks to Rob Nance for all the
lovely artwork.

Finally, I’d like to say thanks to my wife, Mary, for her support and endless cups of tea.
And biscuits.

Errata, updates, and book
support
We’ve made every effort to ensure the accuracy of this book and its companion
content. You can access updates to this book—in the form of a list of submitted errata
and their related corrections—at:

https://aka.ms/BegintoCodePython/errata

If you discover an error not already listed, please submit it to us at the same page.

https://aka.ms/BeginCodePython/downloads
https://aka.ms/BegintoCodePython/errata

If you need additional support, email Microsoft Press Book Support at

mspinput@microsoft.com

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to

http://support.microsoft.com

Obtaining MTA qualification
The Microsoft Certified Professional program lets you obtain recognition for your
skills. Passing the exam 98-381, “Introduction to Programming Using Python” gives
you a Microsoft Technology Associate (MTA) level qualification in Python program-
ming. You can find out more about this examination at

https://www.microsoft.com/en-us/learning/exam-98-381.aspx

To help you get the best out of this text, if you’re thinking of using it as part of a pro-
gram of study to prepare for this exam, I’ve put together a mapping of exam topics to
book elements that you may find helpful. (Note that these mappings are based on the
exam specification as of October 2017.)

I’ve also created an appendix, which puts some of the elements described in the book
into the context of the exam, and you can find this in the same place as the sample
code downloads.

https://aka.ms/BeginCodePython/downloads

Qualification structure
The qualification is broken down into a number of topic areas, each of which com-
prises a percentage of the total qualification. We can go through each topic area
and identify the elements of this book that apply. The tables below map skill items to
sections in chapters of this book.

mailto:mspinput@microsoft.com
http://support.microsoft.com
https://www.microsoft.com/en-us/learning/exam-98-381.aspx
https://aka.ms/BeginCodePython/downloads

Perform operations using data types and operators
(20-25%)
To prepare for this topic, you should pay special attention to Chapter 4, which
describes the essentials of data processing in Python programs as well as how text and
numeric data is stored and manipulated. Chapter 5 introduces the Boolean variable
type and explains how logical values are manipulated. Chapter 8 describes how to
store collections of data, and Chapter 9 explains the creation and storage of data
structures. Chapter 11 gives details of sets in Python programs.

SKILL BOOK ELEMENT

Evaluate an expression to identify the data type
Python will assign to each variable. Identify str, int,
float, and bool data types.

Chapter 4: Variables in Python

Chapter 4: Working with text

Chapter 4: Working with numbers

Chapter 5: Boolean data

Chapter 5: Boolean expressions

Perform data and data type operations. Convert
from one data type to another type; construct
data structures; perform indexing and slicing
operations.

Chapter 4: Convert strings into floating-
point values

Chapter 4: Convert between float and int

Chapter 4: Real numbers and floating-
point numbers

Chapter 8: Lists and tracking sales

Chapter 9: Use a class to store contact details

Determine the sequence of execution based on
operator precedence = Assignment; Comparison;
Logical; Arithmetic; Identity (is); Containment (in)

Chapter 4: Performing calculations

Chapter 9: Contact objects and references

Chapter 11: Sets and tags

Select the appropriate operator to achieve the
intended result: Assignment; Comparison; Logical;
Arithmetic; Identity (is); Containment (in).

Chapter 4: Performing calculations

Chapter 5: Boolean expressions

Control flow with decisions and loops (25-30%)
To prepare for this topic, you should pay special attention to Chapter 5, which
describes the if construction, and Chapter 6, which moves on to describe the while
and for loop constructions that are used to implement looping in Python programs.

SKILL BOOK ELEMENT

Construct and analyze code segments that use
branching statements.

Chapter 5: Boolean data

Chapter 5: The if construction

if; elif; else; nested and compound
conditional expressions Chapter 5: The if construction

Construct and analyze code segments that
perform iteration.

Chapter 6: The while construction

Chapter 6: The for loop construction

while; for; break; continue; pass; nested
loops and loops that include compound
conditional expressions.

Chapter 6: The while construction

Chapter 6: The for loop construction

Chapter 8: Sort using bubble sort

Perform input and output operations (20-25%)
The use of console input and output functions is demonstrated throughout the
book, starting with the very first programs described in Chapters 3 and 4. Chapter
8 introduces the use of file storage in Python programs, and Chapter 9 expands on
this to show how data structures can be saved into files by the use of the Python
pickle library. Chapter 10 contains details of the string formatting facilities available
to Python programs.

SKILL BOOK ELEMENT

Construct and analyze code segments that
perform file input and output operations. Open;
close; read; write; append; check existence; delete;
with statement

Chapter 8: Store data in a file

Chapter 9: Save contacts in a file using pickle

Construct and analyze code segments that per-
form console input and output operations. Read
input from console; print formatted text; use of
command line arguments.

Chapter 3: Get program output using the
print function

Chapter 4: Read in text using the input function

Chapter 10: Python string formatting

Document and structure code (15-20%)
The importance of well-structured and documented code is highlighted throughout
the text. Chapter 3 introduces Python comments, and Chapter 5 contains a discus-
sion highlighting the importance of good code layout. Chapter 7 introduces Python
functions in the context of improving program structure and describes how to add
documentation to functions to make programs self-documenting.

SKILL BOOK ELEMENT

Document code segments using comments and
documentation strings. Use indentation, white
space, comments, and documentation strings;
generate documentation using pydoc.

Chapter 3: Python comments

Chapter 5: Indented text can cause huge problems

Chapter 7: Add help information to functions

Chapter 12: View program documentation

Construct and analyze code segments that include
function definitions: call signatures; default values;
return; def; pass.

Chapter 7: What makes a function?

Perform troubleshooting and error handling (5-10%)
Chapter 3 contains coverage of syntax errors in Python code. In Chapter 4, the
description of data processing includes descriptions of runtime errors. In Chapters 6
and 7, the causes and effects of logic errors are discussed in the context of an appli-
cation development. Chapters 6 and 10 contain descriptions of how Python programs
can raise and manage exceptions, and Chapter 12 contains a description of the use of
unit tests in Python program testing.

SKILL BOOK ELEMENT

Analyze, detect, and fix code segments that have
errors: Syntax errors; logic errors; runtime errors.

Chapter 3: Broken programs

Chapter 4: Typing errors and testing

Chapter 5: Equality and floating-point values

Chapter 6: When good loops go bad

Chapter 7: Investigate programs with the debugger

Chapter 12: Program testing

Analyze and construct code segments that handle
exceptions: try; except; else; finally; raise.

Chapter 6: Detect invalid number entry using
exceptions

Chapter 10: Raise an exception to indicate an error

Perform operations using modules and tools (1-5%)
Many Python modules are used throughout the text, starting with the random and
time modules. The functions from the random library are used in Chapter 13 to create
random artwork, and functions from the time library are used in a time-tracking
application used in Chapter 16.

SKILL BOOK ELEMENT

Perform basic operations using built-in modules:
math; datetime; io; sys; os; os.path; random.

Chapter 3: The random library

Chapter 3: The time library

Solve complex computing problems by using
built-in modules: math; datetime; random.

Chapter 10: Session tracking in Time Tracker

Chapter 16: Making art

Free e-books from Microsoft
Press
From technical overviews to in-depth information on specific topics, the free e-books
from Microsoft Press cover a wide range of topics. These e-books are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

https://aka.ms/mspressfree

Check back often to see what’s new!

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback is our most
valuable asset. Please tell us what you think of this book at:

https://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go
directly to the editors at Microsoft Press. (No personal information will be requested.)
Thanks in advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter:

http://twitter.com/MicrosoftPress

https://aka.ms/mspressfree
https://aka.ms/tellpress
http://twitter.com/MicrosoftPress

Part 1
Programming
fundamentals

Let’s begin our journey toward programming enlightenment. You’ll start
by considering what a computer actually does and what a programming
language is. Then, you’ll move on to installing the programming tools
you’ll need. Next, you’ll take your first steps in using the Python language

to tell a computer to do things for you.

The aim of Part 1 is to introduce you to fundamental elements of the
Python programming language used by all programs.

1
Starting with

Python

4 Chapter 1 Starting with Python

What is Python?
Before you start learning about Python, it’s worth considering just what we are learn-
ing about. Python is a programming language. In other words, it’s a language you use
to write programs. A program is a set of instructions that tells a computer how to do
something. We can’t use a “proper” language like English to do this because “proper
English” is just too confusing for a computer to understand. As an example, consider
a doctor’s instructions:

"Drink your medicine after a hot bath."

Well, we would probably take a hot bath and then drink our medicine. A computer,
however, would probably drink the hot bath and then drink its medicine. You can
interpret the above instructions either way, because the English language allows
you to write ambiguous statements. Programming languages must be designed so
that instructions written with them are not open to interpretation; they must tell the
computer precisely and unambiguously what to do. This usually means breaking down
actions into a sequence of simpler steps:

Step1: Take a hot bath

Step2: Drink your medicine

A programming language forces us to write instructions in this way. Python is one of
many programming languages invented to provide humans with a way of telling the
computer what to do.

In my programming career, I’ve learned many different languages over the years, and
I confidently expect to need to learn even more in the future. None of them are per-
fect, and I see each of them as a tool that I would use in a particular situation, just as
I would choose a different tool depending on whether I was making a hole in a brick
wall, a pane of glass, or a piece of wood.

Some people get very excited when talking about the “best” programming language.
I’m quite happy to discuss what makes the best programming languages, just as I’m
happy to tell you all about my favorite type of car, but I don’t see this as something
to get worked up about. I love Python for its power and expressiveness. I love the C#
programming language for the way it pushes me to produce well-structured solu-
tions. I love the C++ programming language for the way it gives me absolute control
of hardware underneath my program. And so on. Python does have things about
it that make me want to tear my hair out in frustration, but that’s true of the other
languages, too. And all programming languages have aspects about them that I love.
And I love using all of them.

5What is Python?

Python origins
You might think that programming languages are a bit like space rockets in that they
are designed by white-coated scientists with mega-brains who get everything right
the first time and always produce perfect solutions. However, this is not the case.
Programming languages have been developed over the years for all kinds of reasons,
including reasons as simple as “It seemed like a good idea at the time.”

Guido van Rossum, the original developer of Python, had no idea just what he
was starting when, in late 1989, he decided to spend a few weeks on a hobby pro-
gramming project that he could work on while his office at work was closed during
Christmas. He named this language “Python,” not because of a liking for snakes, but
because he was an enthusiastic fan of the British TV comedy show Monty Python’s Fly-
ing Circus. However, the language was picked up by programmers the world over who
loved its elegance and power. Python is now one of the most popular programming
languages in use today.

Python versions
One of the first things you’ll discover about Python is that many versions of the
language are available. From a programmer’s point of view, this is not terribly help-
ful. Programs you write for one version of Python are not guaranteed to work with
another version. Python lets you use parts of other people’s programs in your pro-
grams, which is a great way to save time and effort. Of course, this only works properly
if all the programs are written using the same Python version. Over the years, the
different versions of the language have resolved into two distinct strands of develop-
ment, which simplifies things somewhat.

Essentially the choice of which version of Python you’ll use boils down to a choice of
version 2.7 or version 3.n (where n is a number that keeps increasing).

 ● Version 2.7 (the old stalwart) is great because a lot of existing software uses ver-
sion 2.7. If you’re looking for a library of Python code to perform a particular task,
there’s a better chance of it being available in version 2.7.

 ● Version 3.n (the latest one) is great because it eliminates some confusing features
of the language that can trip you up.

This book focuses on Python version 3.n, but we’ll look at differences between the
versions when they affect our programs. Also, we’ll consider how to use some libraries
that are supported only in version 2.7.

The good news is that the fundamentals of program creation are the same for both
versions of Python—and indeed for just about all programming languages. Once

6 Chapter 1 Starting with Python

you’ve learned how to write Python programs, you’ll be able to transfer this skill into
many other languages, including C++, C#, Visual Basic, and JavaScript.

Just as you can drive just about any vehicle once you learn the fundamentals of
driving, you can transfer your Python programming skills to other programming
languages. When driving a new car, you just need to locate the various switches and
controls before setting off on your journey. The same holds true with programming.

Build a place to work with Python
If you were a truck driver who spends many hours in the cab hauling goods across the
country, you’d want a truck with a comfortable seat, an unobstructed view of the road,
and controls that are easy to find and use. It would also help if your truck had enough
power to climb hills at a reasonable speed and was easy to handle on twisting moun-
tainside roads.

In the same way, if you expect to spend any amount of time at a keyboard writing
programs, you should have a decent place to work. Find somewhere to set up a PC,
keyboard, and monitor. Pull up a chair that you don’t mind spending quite a few hours
sitting in.

You don’t need a particularly fancy computer for writing programs, but your PC will
need a reasonable amount of memory and processor performance to handle the tools
we’ll use. I suggest using a device with at least an Intel i5 or equivalent processor, 4 GB
of memory, and 256 GB of hard drive space. You can use smaller computers, but they
can make the development process somewhat frustrating because they will take a
while to update your program after you make changes to it.

The operating system you use is a matter of personal preference. I prefer Windows 10,
but if you prefer using macOS or Linux, you can use those operating systems instead.
The Python language and the development environment we’ll use are available for all
three operating systems.

Get the tools
Before you can start sharing or selling your programs, you must download and install
the tools that will make this possible. Installation will take a little while, depending the
speed of your network connection. There will be a few occasions when you’ll just have
to sit and wait while things are fetched from the Internet and installed. Note that it’s
important to perform the actions in the order I provide. The good news is that you
need to perform this installation only once for each computer you want to use.

7Build a place to work with Python

All the tools we’ll use are free to download and install. I find it astonishing and won-
derful that such powerful software is available for free for anyone to use. The Python
distribution makes it easy for you to get started writing programs, and the Visual
Studio Code editor is a great environment for creating large applications.

The tools and how you obtain them are slightly different for the different devices that
you might be using. You can download the latest, up-to-date, instructions here:

www.begintocodewithpython.com/tools/

Python for Windows PC
If you have a Windows PC, you can download and install Python from the Python
website. You’ll download the installer from the Python download site and then run
it to install Python on your Windows PC. I used the Microsoft Edge browser. If you
use a different browser, you’ll see slightly different screens, so my advice would be to
perform the following steps using Edge.

Be sure that you are using the official download site (the one given below) and allow
the installer to run when asked by Windows.

www.python.org/downloads/

Figure 1-1 shows the download page for Python.

Figure 1-1 Python download page

http://www.begintocodewithpython.com/tools/
http://www.python.org/downloads/

8 Chapter 1 Starting with Python

The web page has determined that I am using a Windows PC and has offered me two
versions to download. On the download page, you’ll want to download version 3.6.1
of Python, so click this button to start the download.

The browser will ask what you want to do with the file. If you’re using Microsoft Edge,
you’ll see the dialog box above. Click the Run button. When the Python installer has
downloaded, it will start to run (Figure 1-2).

Figure 1-2 Python installer

The Python installer program will load Python onto your computer and make it
available for use. There are several settings that can change the way that Python is
installed, but you don’t need to change any of these. The only change you should
make is to select the Add Python 3.6 to PATH check box at the bottom of the installer
dialog. Then click Install Now. You might be asked to confirm the changes being
made to your system, so click OK to accept these changes.

9Build a place to work with Python

At the end of the installation, you should see the window shown in Figure 1-3. Click
Close to close the window.

Figure 1-3 Successful setup

You might see the message “Disable path length limit” (Figure 1-4) at the end of the
installation. This refers to the way that Windows manages references to files. If you
see this message, click “Disable path length limit.” You’ll be asked to confirm the
changes to your machine settings.

Figure 1-4 Successful installation with path length limit

Once the installation has finished, click Close to close the installer program.

Open IDLE
First, open the IDLE environment. On Windows 10, click the Start button and then find IDLE
in the Python group of programs (Figure 1-5).

Figure 1-5 Start IDLE

MAKE SOMETHING HAPPEN

10 Chapter 1 Starting with Python

Start Python
You’re about to start up an environment that supports the Python language and
interact with it. This is a bit like opening the front door of a new apartment or house or
getting into a shiny new car you just bought.

The tool you’ll use is called IDLE, which means “Integrated Development Learning
Environment” (and might also be a reference to Eric Idle, one of the members of the
Monty Python comedy team). IDLE provides two ways of interacting with Python: the
“shell” where you can type Python commands that are executed instantly, and a text
editor that allows you to create program code documents. IDLE is available on almost
all operating systems these days.

Python installer problems
The Python download web page can usually work out which operating system you’re using
and will display buttons that automatically direct you to the correct files for your computer.
However; sometimes this might not happen, in which case you won’t see any direct download
buttons. If this happens to you; just select your operating system from the options displayed
on the downloads page and then find the latest release of the language for your computer.

Python is upgraded quite regularly, so you might notice that the version offered is different from
the one shown in Figure 1-1 (for example it might have reached version 3.6.3). This is not a prob-
lem. As long as the version number is 3.n you will be able to use the sample programs in this text.

WHAT COULD GO WRONG

It might be worth adding IDLE to the Start menu or pinning it to the taskbar. You can do this
by right-clicking IDLE and selecting the appropriate option.

On macOS or Linux, open a terminal, type idle, and press Enter. It doesn’t matter which
operating system you use; once IDLE is running, you should see the IDLE command shell
appear on the screen (Figure 1-6).

Figure 1-6 IDLE shell

A shell encloses or “wraps around” something. The IDLE program is enclosing the Python
engine. The Python engine is what runs Python programs. The IDLE Python Shell takes
Python commands that you type in, feeds them into the Python engine, and then displays
the results.

Think of the IDLE shell as a waiter in a restaurant. You tell a waiter what you want to eat, he
goes off to the kitchen and asks the chef to make the food, and then brings the food to your
table. The waiter serves as a “shell” around the kitchen.

11Start Python

You can use IDLE to say hello to Python (Figure 1-7). Type hello and press the Enter key:

Figure 1-7 A failed hello

Hmmmm…this did not go well. As a rule of thumb, when the computer prints a message in
red, this is usually bad news. In this case, the rather long-winded message in red is telling
us that Python does not recognize the word “hello.” Whenever you type a command, the
program behind the Python Shell will look through the list of words it understands and try
to find one that matches. The word “hello” is not defined on this list, so Python issues this
error message.

This is a bit like asking a waiter for a dish that the chef doesn’t know how to cook.

I suppose that the Python Shell could have printed “I don’t know what ‘hello’ means,” but that
would make it too easy. As you will find out (or may already know), computer error messages
have a way of making simple mistakes sound really complicated.

12 Chapter 1 Starting with Python

In the next chapter, we’ll explore in more detail how to use the Python Shell to discover what
computers actually do when they run programs. However, for now, we can end our session
with the shell by typing import this (Figure 1-8), which activates an Easter Egg.

Figure 1-8 The Zen of Python

If you’re looking for a “Philosophy of Python,” then this is a very good one. Perhaps that is
why this Easter Egg has survived as part of the language for so long. If some of the state-
ments sound a bit profound, don’t worry, we’ll touch on what they mean as we go through
the book.

13Start Python

14 Chapter 1 Starting with Python

What you have learned
In this first chapter, you built yourself a place to work by installing the Python lan-
guage and the IDLE development environment.

You discovered that Python is a programming language, and that a programming
language is a simplified version of English that allows programmers to tell a computer
how to do things.

You had a brief conversation with the Python language and discovered that it is not
terribly helpful if you just try to be friendly with it. Instead, you must give it exactly the
right instructions. It can then be surprisingly chatty.

To reinforce your understanding of this chapter, you might want to consider the fol-
lowing “profound questions” about computers, programs, and programming.

What is the difference between a program and an application?

When people talk about software, you will find the words program and application
used interchangeably. When I talk about a program, I am describing some code that
instructs the computer what to do. I regard an application as something larger and
more developed. An application brings together program code and assets, such as
images and sounds, to make a complete experience for a user. A program can be as
simple as a few lines of Python code.

Will “artificial intelligence” (AI) mean that one day we won’t have to
write programs?

This is a very deep question. To me, artificial intelligence is a field in which lots of peo-
ple are working very hard to make a computer very good at guessing. It turns out that
by giving computers lots of information—and telling them how the information is
related—a program can then use all this stuff to make a good guess as to the context
of a statement.

I suppose that humans “guess” at the meaning of things. Maybe one day a doctor
really will want me to drink a hot bath before I take my medicine (per the instruc-
tions at the beginning of this chapter), in which case I’ll do the wrong thing. However,
humans have a much greater capacity to store and link experiences, which puts the
computer at a distinct disadvantage when it comes to showing intelligence. Maybe
in time, this will change. We are already seeing that in specific fields of expertise—for
example, finance, medical diagnosis, and artificial intelligence—can do very well.

However, when it comes to telling computers exactly what we want them to do, we’ll
need programmers for quite a long time…certainly long enough for you to pay off
your mortgage.

15What you have learned

Is IDLE the only tool for writing programs?

No. There are a great many tools that you can use to create programs. Some are tied
to one particular programming language, and others are more general purpose. My
personal favorite is a tool called Visual Studio. It can be used with many programming
languages, including Python. However, Visual Studio is probably a bit complex for
people getting started in programming; it’s like learning to drive in a race car. We’ll
look at Visual Studio and its cousin, Visual Studio Code, in Part 3 of this book.

What do I do if I break the program?

Some people worry that things they do with a program on the computer might
“break” it in some way. I used to worry about this too, but I’ve conquered this fear by
making sure that whenever I do something I always have a way back. You are currently
in that happy position. You now know how to get Python on your computer, and it’s
unlikely that you’ll damage your Python installation simply by running programs in it.
Even if everything goes horribly wrong, and you end up breaking a program such that
it won’t work again, you can simply install a clean copy of the program and start again.

2
Python and

programming

18 Chapter 2 Python and programming

What makes a programmer
If you have not programmed before, don’t worry. Programming is not rocket science.
The hard part about learning to program is that when you start you get hit with a lot
of ideas and concepts, which can be confusing. However, if you think learning to pro-
gram sounds like challenging work and that you might not be able to do it, I strongly
suggest that you put those thoughts aside. Programming is as easy as organizing a
birthday party for a bunch of kids.

Programming and party planning
If you were organizing a kid’s birthday party, you’d have to decide who to invite. You’d
have to remember who wanted the vegetarian pizza and which kids can’t sit next to
each other without causing trouble. You’d have to work out what presents each kid
would take home and what everyone would do at the party. You’d have to organize
the timing so that the magician doesn’t arrive just as the food is served. To help, you’d
organize the party using lists like those in Figure 2-1. Programming is just like this; it’s
all about organization.

GUEST LIST

Rob
Mary
David
Jenny
Chris
Imogen
Mo
Sunil

MENU

Pizza
Chips
Soda
Cola
Orange Juice

SCHEDULE

3:00 pm Arrival
3:30 pm Xbox Games
4:30 pm Food
5:15 pm Magician

GUEST PRESENTS

Hat
Whistle (maybe)
Sweets
Puzzle
Book

Figure 2-1 Party planning is a lot like programming. You must stay organized.

If you can organize a party, you can write a program. What happens in a program is a
little different, but the basic principles are the same. And because a program contains
elements that you create and manage (unlike unruly kids), you have complete control
over exactly what happens. What’s more, once you’ve done some programming, you
might start to approach all tasks in a systematic way, so a bit of programming experi-
ence can turn you into a better organizer overall.

19What makes a programmer

Programming is defined by most people as “earning huge sums of money doing
something that nobody can understand.” I define programming as “determining a
solution to a given problem and expressing it in a form that a computer system can
understand and execute.” One or two things are inherent in this definition:

 ● You need to be able to solve the problem yourself before you can write a program
to do it.

 ● The computer must be made to understand what you’re trying to tell it to do.

You can think of a program as a bit like a recipe. If you don’t know how to bake a cake,
you can’t tell someone else how to do it. And if the person you’re talking to doesn’t
understand instructions such as “Fold the flour and sugar into the mix,” you still can’t
tell him how to bake the cake.

To create a program, you must take a solution you have worked out and then write it
down in simple steps that the computer can perform.

Programming and problems
I also like to think of a programmer as a bit like a plumber. A plumber arrives at a job
with a big bag of tools and spare parts. Having looked at the plumbing problem for
a while, the plumber opens the bag, takes out various tools and parts, fits the parts
together, and solves your problem. Programming is like that. You’re given a problem
to solve, and you have at your disposal a big bag of tools—in this case, a program-
ming language. You look at the problem for a while and work out how to solve it,
and then you fit the bits of the language together to solve the problem. The art of
programming is knowing which bits you need to take out of your bag of tools to solve
each part of the problem.

The art of taking a problem and breaking it down into a set of instructions you can
give to a computer is the interesting part of programming. However, learning to
program is not simply a matter of learning a programming language. Nor is program-
ming simply a matter of coming up with a program that solves a problem. You must
consider many things when writing a program, and not all of them are directly related
to the problem at hand. To start, let’s assume that you’re writing your programs for a
customer. He or she has a problem and would like you to write a program to solve it.
We’ll also assume that the customer knows even less about computers than we do!

Initially, you’re not even going to talk about the programming language, the type of
computer, or anything like that; you are simply going to make sure that we know what
the customer wants. Because programmers pride themselves on their ability to come
up with solutions, as soon as they are given a problem they immediately start think-
ing of ways to solve it—this is almost a reflex action. Unfortunately, many software

20 Chapter 2 Python and programming

projects have failed because the problem they solved was the wrong one. Coming
up with a perfect solution to a problem the customer doesn’t have is something that
happens surprisingly often in the real world. The developers of the software quite
simply did not find out what was required or desired. Instead, they created what they
thought was required. The customers assumed that because the developers stopped
asking questions, the right solution was being built. Only at the final handoff was the
awful truth revealed. It’s very important that a programmer postpone making some-
thing until she knows exactly what is required.

The worst thing you can say to a customer right away is, “I can do that.” Instead, you
should first ask, “Is that what the customer wants?” “Do I really understand what the
problem is?” Asking these questions is a kind of self-discipline. Before you solve a
problem, you should be sure that you have a watertight definition of what the prob-
lem is, which is agreeable to both you and the customer.

In the real world, such a definition is sometimes called a functional design specification,
or FDS. An FDS tells you exactly what the customer wants. Both you and the customer
sign it, and if you provide a system that behaves according to the design specification,
the customer must pay you. Once you have your design specification, you can think
about ways of solving the problem.

You might think having a specification isn’t necessary if you’re writing a program for
yourself, but this is not true. Writing some form of specification forces you to think
about your problem at a very detailed level. It also forces you to think about what your
system is not going to do. You need this clarity when building something for yourself
as much as when working with a customer. The specification sets expectations right at
the start.

PROGRAMMER’S POINT

Specifications must always exist
I have written many programs for money. I would never write a program without getting
a solid specification first. Defining a specification is essential even (or perhaps especially)
when I do a job for a friend.

Modern development techniques put the customer at the heart of development and
involve them in the design process in an ongoing way. These approaches are very
helpful because it’s very hard to get a definitive specification at the start of a proj-
ect. As a developer, you don’t really know much about the customer’s business, and
the customer doesn’t know the limitations and possibilities of the technologies that
you can use to solve the problem. It’s a good idea to make a series of versions of the

21What makes a programmer

solution and discuss each version with the customer before moving on to the next
one. We call this prototyping.

This approach to problem solving will serve you well irrespective of the programming
languages that you’re using. The issues of ensuring adequate specifications and avoid-
ing assumptions are equally important when you try to organize anything, including a
birthday party.

Programmers and people
Finding out what the customer wants is one of the most important aspects of any
programming task. However, communication with other people is important in many
other situations, too. Perhaps you want to convince a wealthy backer that you have an
idea for the next big thing; perhaps you want to persuade a potential customer that
you have the best solution to their problems.

Not all programmers are great communicators in the beginning. However, the
important thing to remember is that communication skills can be learned, just like a
new programming language. Becoming a better communicator might mean going
outside your comfort zone—nobody likes standing in front of an audience for the first
time—but with practice, you can master communication skills and vastly increase your
chances of going a long way in this business.

Effective communication also extends to writing. The ability to create text that others
can read is a very useful skill, and again, the best way to do this is with practice. My
advice is to start writing a blog or a diary. It doesn’t matter that only your mom reads
your blog at first; the important thing is that you write regularly. If you write about
something you’re interested in (I write about programming—surprise, surprise—at
www.robmiles.com), you will quickly become much better at it.

PROGRAMMER’S POINT

Programmers who can communicate well get the most money and
the most interesting work
It’s possible to make a good living from programming even if you can communicate only
in single words and grunts—as long as you can write code quickly that meets the given
requirements. But the interesting tasks go to developers who can communicate well. They
are the ones who can sell their ideas and are best at talking to customers to find out what
the customer wants.

http://www.robmiles.com

22 Chapter 2 Python and programming

Computers as data processors
Now that we know what programmers do, we can start to consider what a computer is
and what makes it so special.

Machines and computers and us
Humans are a race of toolmakers. We invent things to make our lives easier, and we’ve
been doing it for thousands of years. We started with mechanical devices, such as the
plow, which made farming more efficient, but in the last century we’ve moved into
electronic devices and, more recently, into computers.

As computers became smaller and cheaper, they found their way into things around
us. Many devices (for example, the mobile phone) are possible only because we can
put a computer inside to make them work. However, we need to remember what the
computer does; it automates operations that formerly required brain power. There’s
nothing particularly clever about a computer; it simply follows the instructions that it’s
been given.

A computer works on data in the same way that a sausage machine works on meat:
something is put in one end, some processing is performed, and something comes
out the other end. You can think of a program as similar to the instructions a coach
gives to a football or soccer team before a play. The coach might say something like,
“If they attack on the left, I want Jerry and Chris to run back, but if they kick the ball
down the field, I want Jerry to chase the ball.” Then, when the game unfolds, the team
will respond to events in a way that should let them outplay their opponents.

However, there is one important distinction between a computer program and the
way a team might behave in a football game. A football player would know when
given some senseless instructions . If the coach said, “If they attack on the left, I want
Jerry to sing the first verse of the national anthem and then run as fast as he can
toward the exit,” the player would raise an objection.

Unfortunately, a program is unaware of the sensibility of the data it is processing, in
the same way that a sausage machine is unaware of what meat is. Put a bicycle into a
sausage machine, and the machine will try to make sausages out of it. Put meaningless
data into a computer, and it will do meaningless things with it. As far as computers
are concerned, data is just a pattern of signals coming in that must be manipulated in
some way to produce another pattern of signals. A computer program is the sequence
of instructions that tell a computer what to do with the input data and what form the
output data should have.

23Computers as data processors

Examples of typical data-processing applications include the following (as shown in
Figure 2-2):

 ● Mobile phone—A microcomputer in your phone takes signals from a radio and
converts them into sound. At the same time, it takes signals from a microphone
and makes them into patterns of bits that will be sent out from the radio.

 ● Car—A microcomputer in the engine takes information from sensors telling it the
current engine speed, road speed, oxygen content of the air, accelerator setting,
and so on. The microcomputer produces voltages that control the fuel injection
settings, the timing of the spark plugs, and other things to optimize engine per-
formance .

 ● Game console—A computer takes instructions from the controllers and uses them
to manage the artificial world that it is creating for the gamer.

Figure 2-2 Computers in devices

Most reasonably complex devices created today contain data-processing components
to optimize their performance, and some exist only because we can build in such
capabilities. The growth of “The Internet of Things” is introducing computers into an
enormous range of areas. It’s important to think of data processing as much more
than working out the company payroll—calculating numbers and printing out results
(the traditional uses of computers). As software engineers, we will inevitably spend a
great deal of our time fitting data-processing components into other devices to drive
them. These embedded systems mean many people will be using computers even if
they’re not even aware of it!

24 Chapter 2 Python and programming

PROGRAMMER’S POINT

Software might be a matter of life and death
Remember that seemingly innocuous programs can have life-threatening capabilities. For
example, a doctor may use a spreadsheet you have written to calculate doses of drugs for
patients. In this case, a defect in the program could result in physical harm. (I don’t think
doctors do this—but you never know.) For a deeply scary description of what can go wrong
when programmers don’t pay attention to the fundamentals, search for Therac-25 on
the web.

Programs as data processors
Figure 2-3 shows what every computer does. Data goes into the computer, which
does something with it, and then data comes out of the computer. What form the data
takes and what the output means is entirely up to us, as is what the program does.

INPUT OUTPUTCOMPUTER

Figure 2-3 A computer as a data processor

As mentioned earlier, another way to think of a program is like a recipe, which is illus-
trated in Figure 2-4.

In this example, the cook plays the role of the computer and the recipe is the program
that controls what the cook does with the ingredients. A recipe can work with many
different ingredients, and a program can work with many different inputs, too. For
example, a program might take your age and the name of a movie you want to see
and provide an output that determines whether you can go see that movie based on
its suitability rating.

25Computers as data processors

Flour

Sugar

Milk

Eggs

Cake
Human

following
a recipe

Figure 2-4 Recipes and programs

Python as a data processor
You can regard Python itself as a data processor (see Figure 2-5). Code written in
Python goes into the Python engine, which then produces some output.

Python
commands

INPUT

Results

OUTPUT

Python
command

shell

COMPUTER

Figure 2-5 Python as a data processor

Sometimes, as we have seen, the output is an error (for example, if we type hello).
Other times, it can be a philosophical statement on the nature of the Python language
(as when we type import this). Let’s try using the Python command shell to find out
more about how the language works.

Have a conversation with Python
The last time we chatted with Python, we didn’t say much. We’ll now have a more in-depth
conversation and see what we can find out about how the language works. First, we must use
the IDLE command to start up the Python Shell as we did in the previous chapter:

In Chapter 1, we tried to say hello to Python, but it didn’t end well. So, let’s give the command
shell something that we know computers understand—perhaps a number. Type the value 2
and press Enter:

This time we don’t get an error; we just get the value 2 coming straight back to us. It looks as
if the Python Shell might be working out an answer and sending it back to us. We can prove
this by giving it a sum, for example 2+2:

MAKE SOMETHING HAPPEN

26 Chapter 2 Python and programming

This time, rather than echoing 2+2, the Python Shell seems to have evaluated the result and
returned that to us.

27Computers as data processors

It appears that the Python Shell is taking our instructions and acting on them in some
way. In fact, this is exactly what’s happening. At its heart, Python is an expression eval-
uator, which is a fancy way of saying it works things out for us. Give the Python Shell
an expression, and it will respond with the answer. Figure 2-6 shows how a simple
expression appears.

2
operand

(thing to work on)

+
operator

(thing to do)

2
operand

(thing to work on)

Figure 2-6 The anatomy of a simple expression

Items that the expression works on are called operands. Things that do the actual work
are called operators. In the case of 2+2, there are two operands (the two values of 2)
and one operator (the plus). When you feed an expression into the Python Shell, it
identifies the operators and operands and then works out the answer.

28 Chapter 2 Python and programming

Bad expressions
We’ve already seen what can happen if you type something that Python doesn’t under-
stand. You get an error message. The same kind of thing will happen if you give Python an
invalid expression.

A programmer has entered the expression 2+. This expression is not valid, so the Python Shell
has displayed an unhappy red bar and a red error message.

WHAT COULD GO WRONG

Python is very good at working out expressions. You can use Python rather than a cal-
culator if you like. Expressions are worked out in the same way that a mathematician
would do the calculation, doing things like performing multiplication before addition
and obeying parentheses.

We can do some experiments using the Python Shell to investigate expressions. From
now on, rather than showing you screenshots of the Python Shell, I’ll just show the
output that you’ll see in IDLE. In other words, the previous three Python commands
that we have issued would look like this:

>>> 2

2

>>> 2+2

4

>>> 2+

SyntaxError: invalid syntax

The typed text is shown in black, the output from Python is shown in blue, and the
command prompts are shown in brown. Bad things are shown in red.

Python expressions
Now and then, you’ll see “Code Analysis” sections that pose questions about the code we
have just seen. You might try answering the questions yourself before reading the answer.

Question: What do you think would happen if you tried to evaluate 2+3*4?

Answer: The * (asterisk) operator means multiply. Python uses the asterisk in place of
the × (multiplication symbol) used in math. In math, we always perform higher-priority
operations like multiply and divide before addition, so I’d expect the expression above
to display the value 14. The calculation 3*4 would be worked out first, giving an answer
of 12, and this would be added to the value 2. If you try this in IDLE, you should see what
you would expect:

>>> 2+3*4

14

Question: What do you think would happen if you tried to evaluate (2+3)*4?

Answer: The parentheses enclose calculations that should be worked out first, so in the
above expression, I’d expect to see the value 5 calculated (2+3) and then this value to be
multiplied by 4, giving a result of 20.

>>> (2+3)*4

20

Question: What do you think would happen if you tried to evaluate (2+3*4?

Answer: This one is quite interesting. You should try it with the Python Shell. What
happens is that Python says to itself, “The expression I’m trying to work out is incomplete.
I need a closing parenthesis.” So, the Python Shell waits for more input from you. If you
type in the closing parenthesis and complete the expression, the value is calculated and
the result is displayed. You can even add more sums on the second line if you want.

>>> (2+3*4

)

14

CODE ANALYSIS

29Computers as data processors

Question: What do you think would happen if you tried to evaluate)2+3*4?

Answer: If the Python Shell sees a closing parenthesis before it sees an opening one, it
instantly knows that something is wrong and displays an error.

>>>)2+3*4

SyntaxError: invalid syntax

Note that the command shell is trying to help you work out where the error is by high-
lighting the incorrect character.

30 Chapter 2 Python and programming

Python as a scripting language
We can use the Python Shell for having conversations like this because Python is a
“scripting” programming language. You can think of the Python Shell as a kind of
“robot actor” who will perform whatever Python commands you give it. In other
words, you tell the command shell what you want your program to do using the
Python language. If the instructions don’t make sense to the “robot actor,” it tells us it
can’t understand them (usually with red text).

The process of taking a program and then acting on the instructions in it is called
interpreting the program. Actors earn a living interpreting the words of a play; com-
puters solve problems for us by interpreting program instructions.

PROGRAMMER’S POINT

Not all programming languages run like Python
Not all programming languages are “scripting” languages, which are interpreted in the
same way as Python. Sometimes program instructions are converted into the very low-
level instructions that the hardware of your computer understands. This process is called
compilation, and the program that performs this conversion is called a compiler. The com-
piled instructions can then be loaded into the computer to be executed. This technique
produces programs that can run very fast, because when the compiled low-level instruc-
tions are performed, the computer doesn’t have to figure out what the instructions mean;
they can just be obeyed.

You might think this means that Python is a “slow” computer language, because each time
a Python program runs, the “robot actor” must work out the meaning of each command
before performing it. However, this is not really a problem because modern computers run
very, very fast, and Python uses some clever trickery to compile your program as it runs.

31Data and information

Data and information
Now that we understand computers as machines that process data, and we under-
stand that programs tell computers what to do with the data, let’s delve a little bit
deeper into the nature of data and information. People use the words data and infor-
mation interchangeably, but it’s important to make a distinction between the two,
because the way that computers and humans consider data is completely different.
Look at Figure 2-7, which shows the difference.

What the computer sees What we see

Figure 2-7 Data and information

The two items in Figure 2-7 contain the same data, except that the image on the left
more closely resembles how the document would be stored in a computer. The com-
puter uses a numeric value to represent each letter and space in the text. If you work
through the values, you can figure out each value, beginning with the value 87, which
represents an uppercase W (in the “When” that begins the first regular paragraph in
the document on the right).

Because of the way computers hold data, yet another layer lies beneath the mapping
of numbers to letters. Each number is held by the computer as a unique pattern of
on and off signals, or 1s and 0s. In the realm of computing, each 1 or 0 is known as a
bit. (For a wonderful explanation of how computers operate at this level and of how
these workings form the basis for all coding, see Charles Petzold’s Code: The Hidden
Language of Computer Hardware and Software.) The value 87, which we know means
“uppercase W,” is held as the following way:

1010111

Work with text in Python
Let’s try to say “hello” to Python in a way that it understands. Return to the Python Shell in IDLE
and enter the word, ‘hello’. This time, however, enclose the word in single quote characters:

>>> 'hello'

'hello'

MAKE SOMETHING HAPPEN

32 Chapter 2 Python and programming

This is the binary representation of the value. I don’t have the space to go into pre-
cisely how this works (and Charles Petzold already did this!), but you can think of this
bit pattern as meaning “87 is made up of a 1 plus a 2 plus a 4 plus a 16 plus a 64.”

Each of the bits in the pattern tells the computer hardware whether a particular power
of two is present. Don’t worry too much if you don’t fully understand this, but do
remember that as far as the computer is concerned, data is a collection of 1s and 0s
that computers store and manipulate. That’s data.

Information, on the other hand, is the interpretation of the data by people to mean
something. Strictly speaking, computers process data and humans work on information.

For example, the computer could hold the following bit pattern somewhere in memory:

11111111 11111111 11111111 00000000

You could regard this as meaning “You are $256 overdrawn at the bank” or “You are 256
feet below the surface of the ground” or “Eight of the thirty-two light switches are off.”
The transition from data to information is usually made when a human reads the output.

I am being so pedantic because it is vital to remember that a computer does not
“know” what the data it is processing means. As far as the computer is concerned, data
is just patterns of bits; it is the user who gives meaning to these patterns. Remember
this when you get a bank statement that says you have $8,388,608 in your account
when you really have only $83!

Data processing in Python
We now know that Python is a data processor. A script written in Python is interpreted
by the Python system, which then produces some output. We also know that within
the computer running a Python program, data values are represented by patterns of
bits (ons and offs).

This time we don’t get any errors, Python just echoes the text that was entered. If you
compare this with the behavior we saw when we entered a number, you’ll notice that in fact
Python did the same thing. Previously, we entered the value 2, and Python echoed 2. When
we entered a text value, Python echoed the text. The next thing we tried to do with numbers
was add them. Let’s try that with text strings:

 >>> 'hello' + ' world'

'hello world'

This is nice; Python is behaving exactly as we would expect. We know that when we give
Python a sum to work out, it calculates the result and then returns it. We used this to add
2 and 2. Now we’ve discovered that we can also use the same procedure to add ‘hello’ to
‘ world’. Note how I rather cleverly put a space in front of the word ‘ world’; otherwise, the
program would have displayed 'helloworld'.

There is also something clever going on inside Python, in that the way + (the addition)
behaves is correct for both numbers and strings. If we ask Python to add two numbers, it
returns their sum. If we ask Python to add two strings, it returns one string added to the end
of the other.

Break the rules with Python
Question: What do you think would happen if you missed the closing quote of a string you
were typing?

Answer: From our experiments with parentheses, you might expect Python to wait
patiently on the next line for you to type in the rest of the string. Unfortunately, this does
not happen.

>>> 'hello

SyntaxError: EOL while scanning string literal

A “string literal” is a string of text that is “literally” just there in the text. The letters EOL
are an abbreviation for “End Of Line.” The Python Shell is saying that it doesn’t like you to
put line endings into strings. Python regards individual operands (numbers and strings)
as things that are not allowed to span multiple lines. There’s nothing wrong with creating
a text expression that spans several lines (you can try this), but Python does not allow the
operands of that expression to span multiple lines.

CODE ANALYSIS

33Data and information

Question: What do you think would happen if you tried to subtract one string from another?

Answer: Python is clever enough to know that, while it is perfectly sensible to use the –
(subtraction) behavior to mean “subtract one integer from another” (you can try this if
you like), it is not sensible for a program to try to subtract one string from another.

>>> 'hello' - ' world'

Traceback (most recent call last):

 File "<pyshell#11>", line 1, in <module>

 'hello' - ' world'

TypeError: unsupported operand type(s) for -: 'str' and 'str'

Python is giving us details of what went wrong, but rather than saying, “Subtracting
strings is stupid,” it gives a description that is much harder to understand. To make sense
of this, you need to know that the word operand means “something that an opera-
tor works on.” In this case, the operator is the – (minus) operator, and operands are
two strings (hello and world). Python is saying that you can’t put the minus operator
between two strings.

Question: What do you think would happen if you tried to add a number to a string?

Answer: Adding a number to a string is as stupid as subtracting one string from another,
and so you would expect Python to give you an error. But you’d also expect the error to
be hard to understand:

>>> 'hello' + 2

Traceback (most recent call last):

 File "<pyshell#14>", line 1, in <module>

 'hello' + 2

TypeError: must be str, not int

Hopefully, this time the message should make a bit more sense. Python is saying that
something “must be a string, not an integer” (although it is not very helpful in that it
doesn’t tell you which thing is wrong).

If we really wanted to put the digit 2 on the end of the word 'hello', we could do this by
enclosing the digit in quotes:

>>> 'hello' + '2'

'hello2'

>>>

34 Chapter 2 Python and programming

Question: What do you think would happen if you tried to multiply a string by a number?

Answer: It works. The string is repeated the given number of times:

>>> 'hello' * 3

'hellohellohello'

Python will try to do something sensible when it can. This expression still works if the
order of the operands is the other way around. Python will also do something sensible if
you try to multiply a string by zero or a negative number.

35Data and information

Text and numbers as data types
If you look carefully at the results of the statements above, you’ll notice that when
Python evaluates a numeric expression (one that creates a number as a result), it
returns just the digits, but if it evaluates a string, it returns text enclosed in quotes
because Python obeys the rules about how various kinds of data are expressed.

Python enforces a strict separation between numeric data (the value 2) and text data
(the string hello). The way values are stored, and the effect of operations on them, is
different for each data type, even though the operation might have the same oper-
ator for each type. We can use the + operator to add numbers or strings of text, and
Python ensures that the correct thing happens because Python works out the context
of the action. If it sees a + operator between two numbers, it will use the numeric ver-
sion of +. If it sees a + operator between two strings, it will use the string version of +.

Humans do the same kind of thing. We talk about washing our face, washing the
dishes, or washing a horse, and although the action will be fundamentally the same
(we are washing something), what we actually do will be different in each case. It
would be possible for a language to have different words for “wash,” one of which
meant “washing a horse,” but English doesn’t work this way (although some languages
do). If we just use the word “wash,” the reader must use brain power and experience
to work out what’s going on. Of course, brain power and experience is just what a
computer doesn’t have very much of, and so when we write a program, we must be
consistent about the way we express what we want. The design of Python (and other
programming languages) force this to happen.

36 Chapter 2 Python and programming

Work with Python functions
Now that we know something about how Python works with text and numbers, we
can start to investigate how text elements are actually represented as numbers, and
even patterns of bits. To do this, we’ll use Python itself to investigate how it stores
values. We’ll use some of the functions that are built in to the Python language.

A function is a behavior with a distinct name. If you were writing a script for an actor
to perform, you could include stage directions such as “Move left,” “Look out of
a window,” or my personal favorite, “Exit pursued by a bear.” These would trigger
actions that the actor would perform during the play. You can regard these actions as
“functions” that the actor knows how to perform. Python is like an actor. It knows how
to perform a set of built-in functions. We’ll use some of these functions to investigate
how text is represented in a computer.

PROGRAMMER’S POINT

Functions are an important part of any programming language
A big part of learning a programming language is learning the functions that it provides.
In the next few chapters, we’ll learn quite a few functions, and later we will start writing our
own functions, too.

Each Python function has a distinct name and might be given data to work on. In this
respect, you can think of a function as a tiny data processor, in that something goes
into the function and a result is generated.

The ord function
One of the actions that Python knows how to perform is called ord. The name is short
for the “ordinal value.” If you look up “ordinal,” you’ll find a highly confusing descrip-
tion (or at least I did). What it means in this context is, “Give me the value that rep-
resents this character in the sequence of possible character numbers.” Or, in shorter
form, “Give me the number that represents this character.”

A function is called by giving the name of the function, followed by the things that the
function works on, enclosed in parentheses. Figure 2-8 shows the anatomy of a call of
the ord function. The programming name for “the thing that a function works on” is
an argument.

Investigate text representation using ord
Let’s use ord to investigate how text is stored inside the computer. We can start by finding
the number used to represent a particular character. We can feed the ord function a string
that contains just a single W character and see what number comes out. Enter the commands
into the Python Shell in IDLE and note what comes back.

>>> ord('W')

87

This is exactly what we saw in Figure 2-8 above. The W in the first word of the Declaration of
Independence was shown as the value 87.

However, we need to be careful when we write our Python expression. The W that we are
interested in must be part of a string of text, so it must be enclosed in the single quotes. If we
omit the quotes, the Python system thinks we are asking about something called W and tells
us it doesn’t know anything about such a thing.

>>> ord(W)

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 ord(W)

NameError: name 'W' is not defined

You won’t use the ord function a lot in your Python programs, but it does provide a
very useful window into the way values are manipulated by Python code.

MAKE SOMETHING HAPPEN

37Work with Python functions

ord
function name

(thing we want done)

'W'
argument

(thing to give function)

(
parenthesis

)
parenthesis

Figure 2-8 The anatomy of a function call

38 Chapter 2 Python and programming

The chr function
The ord function is complemented by a Python function called chr. This function takes
a number and delivers the character represented by that number.

Convert numbers to text using chr
There are absolutely no prizes for working out what you would see if you fed the value 87
into the chr function, but you should try it anyway.

>>> chr(87)

'W'

The numbers that represent the characters are arranged in a sensible way, in that if you dis-
play the character corresponding to the value 88, you get just what you would expect:

>>> chr(88)

'X'

MAKE SOMETHING HAPPEN

Within the computer world, international standards map particular values to particular
characters. I’ve been writing computer programs for a very long time, and because
of this experience, I happen to know that the capital letter A is represented by the
value 65, and the letter space (which is very important because it allows us to put gaps
between words) is represented by the value 32. However, there’s normally no need to
learn these numbers because Python and the underlying operating system will take
care of text display. (I’ve also discovered that knowing these numbers doesn’t really
help me impress people at parties.)

39Work with Python functions

Investigate data storage using bin
You can regard computer memory as a huge expanse of little boxes, each of which has
a unique numeric address. Each memory location comprises 8 individual bits, which
can be either on or off (as we saw earlier). A memory location like this is called a byte.
When you brag about your computer having “16 gigabytes of memory,” you are really
saying that the computer contains sixteen thousand million individual locations, each
of which is the size of a byte.

A single byte can’t store a great range of values, so several bytes can be grouped
together to store larger numbers. Later, we’ll look at how this works, and the kinds of
values that Python can store, but for now let’s just look at the patterns of bits that are
used to hold values.

The bin function built into Python takes a number and returns a string of bits that rep-
resents the value of that number.

Discover binary representation
We can use the bin function to investigate how data is stored in the computer.

>>> bin(87)

'0b1010111'

The bin function returns a string that gives the binary representation of that number. Note
that this a string of 0s and 1s. The string is prefixed by the characters 0b which tell the reader
that this is a binary representation of a number.

MAKE SOMETHING HAPPEN

Building binary numbers
The bin function is not used much in Python programs (unless you are lucky enough to have
a customer ask you to write a program that displays binary values), but we can use it to inves-
tigate how numbers are stored in a computer. Remember that inside the computer hardware
all data is manipulated in terms of either a high or a low voltage present on the given signal.
We can think of these as 0 (no voltage) and 1 (some voltage).

Question: What does the binary value of 0 look like?

Answer: We can discover this by using the bin function again.

>>> bin(0)

'0b0'

The value of 0 in binary looks like any other zero.

Question: What does the binary value of 1 look like?

Answer: We can discover this by feeding 1 into the bin function.

>>> bin(1)

'0b1'

The value of 1 in binary looks exactly like any other 1 that we have seen before. So far,
there doesn’t seem to be anything special about binary values.

Question: What does the binary value of 2 look like?

Answer: We can discover this by feeding 2 into the bin function.

>>> bin(2)

'0b10'

This is different. To understand how, let’s start by considering the decimal number 10. In
this number, the numeral 1 tells us how many tens are in the number. Binary works in the
same way, except that the numeral 1 tells us how many twos there are in the number. So,
the value 10 in binary means two.

CODE ANALYSIS

40 Chapter 2 Python and programming

Question: What do you think the binary value 11 means?

Answer: I suspect that binary 11 is the decimal value 3 (a 1 plus a 2) We can use the bin
function to test this.

>>> bin(3)

'0b11'

The third bit will be the number of fours in a number, the fourth bit will be the number of
eights, and so on. You might want to experiment with bin to see what the patterns of bits
are for numbers and then check your results.

Question: How does the binary value of 86 differ from the binary value of 87?

Answer: We can discover this by using the bin function again.

>>> bin(86)

'0b1010110'

>>> bin(87)

'0b1010111'

If you compare the two binary patterns, you’ll notice that the rightmost bit has changed
from a one to a zero because this bit indicates whether the binary value contains a ‘1’. Any
number that contains a 1 as the rightmost bit is an odd number. If you don’t believe me,
experiment with a few values.

41What you have learned

What you have learned
In this chapter, you’ve learned about how computers actually work and what it means
to program. You discovered that a computer views the entire universe as patterns of
ons and offs, which represent the data with which the computer is working. The com-
puter performs data processing by transforming one pattern of bits, the input, into
another pattern of bits, the output.

When human beings view the output data and act on it, the data becomes informa-
tion. Computers are unaware of the meaning that we place on the patterns of bits that
they process, which means that a computer can do “stupid” things with data.

The program tells the computer what to do with the pattern of bits. The computer
itself only understands very simple instructions, which must be written in special
languages, called programming languages. Python is a programming language, and it

42 Chapter 2 Python and programming

works as a computer program in that it takes in program instructions and then acts on
them, in the same way that a human actor would perform a script.

The job of the programmer is to create a program as a sequence of instructions that
describe the tasks to be performed. To create a successful solution, the programmer
must not only write a good program but also make sure that the program actually
does what the user wants. This means that before a programmer can write any code,
she will have to make sure that she has a good understanding of exactly what is
required. Talking to people and finding out what they want is a very valuable skill if
you want to be a successful programmer.

To reinforce your understanding of the content, consider the following “profound
questions” about computers, programs, and programming.

Would a computer “know” that it is stupid for someone to have an age of –20?

No. As far as the computer is concerned, the age value is just a pattern of bits that
represents a number. If we want a computer to reject negative ages, we must actually
build that understanding into the program.

If the output from a program is settings for the fuel-injection system on a car,
is the output data or information?

As soon as something starts acting on data, it becomes information. A human being
is not doing anything with these values, but they will cause the speed of the engine
to change, which might affect humans, so I reckon this makes this output information
rather than data.

Is the computer stupid because it can’t understand English?

It’s difficult to write something in English that is completely unambiguous. Large parts
of the legal profession are built on a precise interpretation of the meaning of texts and
how they are applied in particular situations. Since we humans can’t agree on how to
understand something, it’s not fair to call a computer stupid because it can’t do this
either.

If I don’t know how to solve a problem, can I write a program to do it?

No. You can put some statements together and see what happens when they run, but
this is very unlikely to produce what you want. It would be like throwing a bunch of
wheels, gears, and an engine against a wall and expecting them to land and form a
working car. In fact, the best way to write a program is frequently to get away from the
keyboard for a while and just think about what the program is supposed to do.

43What you have learned

Is it sensible to assume that the customer measures everything in inches?

It’s never sensible to assume anything about a project. A successful programmer must
make sure that everything he is doing is built on a solid understanding. Every assump-
tion you make increases the potential for disaster.

If the program does the wrong thing, is it my fault or the customer’s fault?

It depends:

 ● Specification right, program wrong: programmer’s fault

 ● Specification wrong, program right: customer’s fault

 ● Specification wrong, program wrong: everyone’s fault

3
Python program

structure

Run your first Python program
To create a Python program file, first use IDLE to open a new editing Window on the desktop.
Click the File menu at the top line of the IDLE window and select New File from the list that
appears, as shown in Figure 3-1. Alternatively, you can press Ctrl+N. Note that I’m perform-
ing these actions on my PC running Windows 10. You might see slightly different looking
screens, but the content will generally be the same.

As shown in Figure 3-2, a second window appears on the screen, with the title “Untitled.”

MAKE SOMETHING HAPPEN

46 Chapter 3 Python program structure

Write your first Python program
So far, we’ve used the Python Shell part of IDLE to enter Python program commands.
This is a great way to experiment with the Python language, but we discovered that
when we want to repeat an action, we must retype the commands again. What we
really want to do is create a Python program. A program is a sequence of actions that
are performed in order. You can think of a program as like a script you would give
an actor to perform. The actor reads each line and then moves on to the next one.
Likewise, Python takes each Python instruction, checks to ensure that it’s sensible,
performs it, and then moves on to the next instruction.

Python programs are stored in files on your computer. There’s nothing special about
a Python program file; it’s just a text file that contains program instructions that
Python understands.

Run Python programs using IDLE
From within IDLE, we can open a new window where we can work on Python pro-
grams and store them in a file on our computer. We then ask IDLE to run the program
so that we can see whether the program works properly. This is exactly what profes-
sional developers do when they write programs.

Figure 3-1 IDLE New File

Figure 3-2 IDLE Untitled edit window

This window is not the same as the Python Command Shell. It lacks the >>> prompt where
you type Python commands. Python statements typed into this new window are not exe-
cuted when you press Enter. The statements are held as part of a program. You can treat this
window like any other text editor you’ve used. Think of it as a word processor for programs.
The editor will color the various elements in the program in the same way as the Python Shell
does. It will also provide some pop-up help messages as you type in your programs.

47Write your first Python program

Now we can type in the same Python expression we used at the beginning of our program-
ming journey (Figure 3-3).

Figure 3-3 An expression in a program

This program doesn’t do much, but it should print out the result of the calculation. Now we
need to run it. Click the Run menu option and select Run Module (Figure 3-4).

Figure 3-4 Run a program

48 Chapter 3 Python program structure

The first time we run an Untitled program, Python asks if we want to save it in a file (Figure 3-5).

Figure 3-5 OK to save

Click OK to open a file save menu (Figure 3-6):

Figure 3-6 Default file save location

IDLE is not offering to save your program files in a practical location. You shouldn’t form the
habit of saving Python programs in the Program Files area of your computer (even assum-
ing that your computer will let you). Instead, I suggest that you navigate to your Documents
folder and create a Python folder there (Figure 3-7).

49Write your first Python program

Figure 3-7 Saving your first program

Give the program a sensible name (I called mine firstProg) and click Save. IDLE will add the
Python file extension (.py) to the file name when it saves it. This is an exciting moment. As
soon as you click Save, your first program will start running, and the results will be displayed
in the the Python Shell part of IDLE. Figure 3-8 shows the output from our program.

Figure 3-8 Running our first program

The program has definitely run (you see the full name of the file being used), but it doesn’t
seem to have printed anything, which is unfortunate. We expected to see the value 4 printed
(the result of calculating 2+2), but we see nothing. This does not bode well for future pro-
grams. What’s happening here?

50 Chapter 3 Python program structure

51Write your first Python program

Get program output using the
print function
It turns out that our tiny program is actually running perfectly. It’s just that we don’t yet
understand how a Python program communicates with the user. Recall that the Python
system is a pure data processor. A Python program goes in one end and the results of
running the program come out of the other. A Python program can be as simple as the
single statement 2+2, or it may contain many thousands of Python statements.

The output from a program comprising 2+2 is the value 4 (as we have seen). The output
from a larger program usually indicates whether or not the program worked properly.

The Python Shell envelops the Python system (that’s why it’s called a shell) and lets us
type in Python and view the results of the program. But a program that runs and gen-
erates a single result is not usually what we want. We want a program that will have a
conversation with us as it runs. Figure 3-9 shows the arrangement we want.

Python
program

INPUT

Results

OUTPUT

Python

COMPUTER

USER

Figure 3-9 Python as a data processor with input/output

When the program runs, it should send messages to the user and receive information
from the user. Python provides functions that can interact with the user, called print
and input. We’ll take a look at the input function in the next chapter. Let’s start with
a look at how to use the print function.

Work with print in a program
You first saw functions in the previous chapter, where you used ord and chr to work with the
character codes for text. You give the print function an expression to print out for the user
to read. We can use it to allow our program to print messages to the user (Figure 3-10). The
messages are displayed by the Python Shell part of IDLE.

Figure 3-10 Using print in a program

Add the print function as shown and run the program again. You’ll be asked again if you want
to save the program before you run it. Select Yes and look at the output (Figure 3-11).

Figure 3-11 Printing a message from the program

MAKE SOMETHING HAPPEN

52 Chapter 3 Python program structure

Finally, we get the value 4 printed out. If we want to print out more messages, we can just add
more calls to the print function. (Note that I’m just showing the program code and output
now, rather than whole screenshots from the IDLE editor).

print('The answer is: ')

print(2+2)

This would print out two lines of text:

======== RESTART: C:\Users\Rob\Documents\Python programs\firstProg.py ========

The answer is:

4

If we want to print out several things on one line, we can give the print function a list of
arguments.

Each item in the list is separated by a comma character:

print('The answer is:', 2+2)

This would print out just one line of text:

======== RESTART: C:\Users\Rob\Documents\Python programs\firstProg.py ========

The answer is: 4

The values of the arguments are printed out one after the other. Note that the print function
automatically inserts a space between each of the items it prints.

53Write your first Python program

Eliminate save requests
By now, the incessant requests to save after each edit should be driving you slightly mad. You
can stop IDLE from repeatedly asking you the question by changing a setting.

On a Windows PC, click the Options menu and select Configure IDLE.

On a Mac, you can produce the same dialog by selecting Preferences from the IDLE menu.

Then move to the General tab in the dialog that appears and select the No Prompt option in
the Autosave Preferences, as you can see in Figure 3-12.

Figure 3-12 Save options

You can use this menu to set many other preferences, including the size of the text in the IDLE
display. This can be very useful if you are creating a program and want your program output
to be visible from a distance—for example, if you were creating a party game, as we’ll do later
in this chapter.

MAKE SOMETHING HAPPEN

54 Chapter 3 Python program structure

Broken programs
Python performs the same error checking on programs as it did when you entered state-
ments using the the Python Shell part of IDLE. Let’s look at a couple ways that our simple
program could go wrong. Consider the following couple lines of code:

print('The answer is: '}

print(2+2)

This code looks correct at first glance, but it contains a serious error. The closing parenthe-
sis that should be at the end of the top line has been replaced with a closing brace instead.
When I try to run the program, I get an error, as shown in Figure 3-13.

Figure 3-13 Invalid syntax error

The editor has helpfully highlighted the incorrect closing brace. The IDLE editor actually
checks the syntax of your program as you type it in. When I typed the incorrect brace above,
my PC produced a warning sound to indicate that I’d done something silly. As you type in
your programs, you’ll notice that the IDLE editor tries to help you get them right. When you
type a closing parenthesis, you’ll notice that the entire sequence of characters surrounded
by parentheses is highlighted. This is very useful if you nest one set of parentheses inside
another. You can use this highlighting feature to see precisely which elements are enclosed
in a particular pair of parentheses.

WHAT COULD GO WRONG

55Write your first Python program

If you want to check the syntax of your program without running it, you can use the Check
Module option from the Run menu in the IDLE editor. This option checks that the code is
correct but doesn’t actually try to make it run.

Here’s another example of problematic code:

print('The answer is: ')

Print(2+2)

This code looks correct at first glance, but it also contains an error. In this case, I’ve misspelled
the second print function call, using the name Print by mistake. Python is case sensitive. It
regards the words Print and print as different. This time when I run the program, the error is
not displayed in the editor but in the Python Shell part of IDLE.

======== RESTART: C:\Users\Rob\Documents\Python programs\firstProg.py ========

The answer is:

Traceback (most recent call last):

 File "C:\Users\Rob\Documents\Python programs\firstProg.py", line 2, in <module>

 Print(2+2)

NameError: name 'Print' is not defined

The error is only detected when the program runs. As you can see, the first call to print
worked correctly, with the message 'The answer is: ' displayed. But on the next line, the
attempt to use a function called Print failed with an error message because that function
does not exist.

This is called a run time error. The Python syntax checker detects mismatched parentheses,
but it doesn’t verify that all function calls have matching functions.

This means that you have to get used to the fact that even if your program doesn’t contain
syntax errors, it might still not work.

The print function and Python versions
There are currently two versions of Python in popular use. We discussed this at the
very beginning of the book. Version 2.7 is the “old school” version, which is interesting
because there are many libraries of code written using this version. Version 3.n (where
n is a value larger than 2) is the “new kid on the block,” with new features and with
some features “tidied up.” The older version of Python supports a variety of the print
behavior that works without parentheses around the items to print:

print 'hello from Python'

56 Chapter 3 Python program structure

57Use Python libraries

I’m telling you about this, not because I want you to write your programs this way, but
because you might encounter older Python programs that look like this. You might
also have problems if you use parentheses in print statements in a program written for
the older version of Python:

print('The answer is:', 2+2)

This statement, which we know should print, “The answer is: 4”, will print the following
in Python 2.7:

('The answer is:',4)

So, if your Python program doesn’t seem to be printing correctly, check which version
of Python you’re using.

This alternate behavior is unfortunate and is one of the things about Python that I find
most confusing. But, in the same way that we must live with keyboards designed to slow
down typing, we must also live with these inconsistencies between Python versions.

Use Python libraries
We’ve already seen some built-in functions provided by Python. We have used the ord
and print functions, among others. Python also provides a vast number of function
libraries that we can add to our programs. Some libraries are provided as part of a
Python installation on a computer; others can be loaded from the Internet. A Python
program can make use of multiple libraries simultaneously.

The random library
We can start by exploring the random library, which provides a source of random num-
bers that we can use in our programs. Adding randomness to programs is a fun thing to
do, and random numbers are the basis of many games. We need to tell Python that we
want to use the functions in a library in our program by using the import command.

import random

Investigate the random library
The import commands can be used in the Python Shell as well as inside a program. Open up
the Python Shell part of IDLE to get the >>> prompt.

Enter the call of randint.

>>> random.randint(1, 6)

Will this work?

>>> random.randint(1, 6)

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 random.randint(1, 6)

NameError: name 'random' is not defined

MAKE SOMETHING HAPPEN

58 Chapter 3 Python program structure

The import command is followed by the name of the library we wish to import.
This command will import the random library. A program can now use functions
contained in the library. The random library contains lots of functions, including one
called randint, which generates a random integer in a particular range. A program
can tell randint the range by supplying two arguments (remember that an argument
is the name for some data that we’re passing into a function call) that give the lowest
and highest numbers to be produced. For example, we could use a lowest value of 1
and a highest value of 6 to simulate the throw of a die.

You can see what a library function call looks like in Figure 3-14. The name of the
function is preceded by the name of the library to look in. The library name and the
function name are separated by a period (a full stop).

random
library name

(library to use)

randint
function name

(thing we want done)

1, 6
argument

(inputs for function)

.
period

)
parenthesis

(
parenthesis

Figure 3-14 Anatomy of a library function call

It would seem not. The Python Shell part of IDLE is complaining that the word random is not
defined. So, let’s import the random library:

>>> import random

The statement doesn’t produce any output; we just get the command prompt back. Never-
theless, we’ve successfully imported the random library into our program. Note, however,
that if we had misspelled the name of the library (remember that Python is case-sensitive),
we would have seen an error:

>>> import Random

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 import Random

ModuleNotFoundError: No module named 'Random'

Now that we have the random library installed successfully, we can begin using it. Type the
library name, followed by a period and then the randint function call. Once you have typed
the opening parenthesis (which marks the beginning of the function’s arguments), you
should notice something interesting, as shown in Figure 3-15.

Figure 3-15 A pop-up help message

59Use Python libraries

The Python Shell can access information about each of the library functions and will pop up a
helpful message about the function’s arguments. In this case, it’s telling us that the func-
tion returns a random integer in the range a to b, including both end points. There are two
arguments, a and b. You don’t have to do anything to remove this pop-up message; just type
in the rest of the statement and press Enter. Remember that the Python Shell just works out
results and returns them, so you should see the result of the call to randint.

>>> random.randint(1,6)

4

You might see the value 4 when you run the command. Obviously, there is a one in six chance
for each of the six options to appear. You can change the bounds of the lower and upper val-
ues of the random number to any that you like, but you must make sure that the lower bound
is lower than the upper bound; otherwise, you’ll get an error.

Now we can make a program that will simulate the throw of a single die. Click File, New File
to create a new Python file. Enter the following lines into the file.

import random

print('You have rolled: ', random.randint(1, 6))

Run the program and save it in a file called throwDie. This Python program will print a number
in the range 1 to 6, inclusively. The program works because the print function can print num-
bers, and the randint function returns a random number within the range of its arguments.

The first time I ran this program, it printed “You have rolled: 4”. The second time I ran the
program, it printed “You have rolled: 2.”

60 Chapter 3 Python program structure

The time library
Another useful Python library is the time library. In Chapter 5, we’ll use the time library
to get the date and time from the PC’s clock, but for now, I want to focus on just one
function in the library: the sleep function. This can be used to make a Python pro-
gram sleep for a particular amount of time.

I use the sleep function in my programs to give the user the impression that the com-
puter is “thinking” about my problem. The sleep function can also be used to give the
user time to read what the program displays.

It’s important to make it clear that calling the sleep function doesn’t actually cause
your entire computer to stop. It simply tells the operating system (whether that is Win-
dows, macOS, or Linux) to pause this particular Python program for a duration of time.

Make an egg timer
You can use the sleep function to make an egg timer program. The program should allow
the user to time a 5-minute boiled egg. You can do this by modifying the previous program
which paused for 5 seconds.

For extra style points, you could make the program print, “Nearly cooked, get your spoon
ready,” 30 seconds before the 5-minute deadline.

You could even expand this into an interactive recipe program that describes the steps to be
performed at each point in the recipe and then pauses until the next step is performed.

MAKE SOMETHING HAPPEN

Python comments
It’s very important that you write programs in a way that makes it easy for people
reading your code to understand what’s going on. You don’t write comments for the
computer; you write comments for someone reading your program. You can also use
comments to indicate the particular version of the program, when it was last modified
and why, and the name of the programmer who wrote it—even if it was you.

61Python comments

The operating system is in charge of deciding which programs are active at any given
time, and making a program sleep just means that the program will not be running.
All the other programs in the computer will be active as normal.

The sleep function is given a single argument, which is the number of seconds that
the program should pause.

import time

print('I will need to think about that..')

time.sleep(5)

print('The answer is: 42')

This program will print out the first message, pause majestically for 5 seconds, and
then print out the second message. The sleep function uses the system clock in the
computer, which is very accurate. You can make the program sleep for a very long
time if you wish.

62 Chapter 3 Python program structure

A comment begins at the character # (hash or number sign) and extends to the end of
that line, like this:

Egg timer program 1.0 by Rob Miles

import time

print('Put the egg in boiling water now')

time.sleep(300)

print('Take the egg out now')

As soon as the Python system encounters the beginning of a comment (the # charac-
ter), it ignores everything until the end of that line. In IDLE, comments are displayed in
red to make them stand out. You can add comments to the end of a statement.

time.sleep(300) # sleep while the egg cooks (300 seconds, or 5 minutes)

The above comment is a good one because it explains why the program is performing
the sleep.

print('Put the egg in boiling water now') # print put the egg in boiling water now

The preceding comment is less useful. Anyone who understands Python (and indeed
most people) will be quite able to understand what the above statement does without
reading the comment.

We’ll discuss comments in more detail later in the book. For now, form the habit of
giving every program a title and adding comments to statements to explain their use.

Code samples and comments
Now that we’ve started creating programs, we can start to use the code samples
provided with this book. Each chapter has a number of associated code samples. I’ll
identify the code samples by adding a comment at the top of the text:

EG3-01 Throw a single die

import random

print('You have rolled: ' + random.randint(1, 6))

You can find this program in the code sample folder for Chapter 3. It has the file name
EG3-01 Throw a single die.

A comment on a single line

63Run Python from the desktop

Run Python from the desktop
Until now, we’ve been running our programs from inside the IDLE environment. How-
ever, it’s also possible to run Python programs directly from your computer’s desk-
top. Your operating system can use the file extension mechanism to identify Python
programs and send them to the Python system to be executed.

A file extension is the means by which an operating system determines the application
associated with a given file. It is expressed as a number of letters appended to the end
of a file name. Microsoft Word documents have the file extension .docx, text docu-
ments have the extension .txt. Python programs are stored with the file extension .py.

When you save a Python program from IDLE, the file extension .py is automatically
added to the file name. When you select the Python program file from the desktop,
the operating system runs the Python system on that file. Figure 3.16 shows three of
our sample programs in a folder on the Windows 10 operating system.

Figure 3-16 Python programs in a folder

If we double-click any of the files, the Python system starts to run the program. You
can see that the folder indicates that the files are of the type “Python File,” and the
icon for each file is the icon for a Python source file.

If you have problems with Python starting correctly, you can change the file associa-
tions in Windows 10 to select the Python system. Right-click the file name and select
Open with from the context menu that appears. As you can see in Figure 3-17, you
can select the application that you want to associate with the Python source files.

64 Chapter 3 Python program structure

Figure 3-17 Managing file associations in Windows 10

I can select a suggested application or select More apps to find the Python system on
my machine. However, if you’ve followed the installation instructions at the beginning
of the book, it’s unlikely that you will have to do this.

Delay the end of the program
One problem that you might have is that the program runs and then finishes before
you can read the results. For now, you can solve this problem by adding a sleep state-
ment as the last statement in the program. In the next chapter, you’ll find out how to
make a program wait for input from the user before continuing.

Adding some snaps
Printing messages in the Python Shell part of IDLE is all very well, but it would be great
if we could display pictures and play sounds from our Python programs. In Chapter 16,
we’ll learn to do this and more when we discover how to make games using the
pygame framework.

65Adding some snaps

But before we do that, we’ll use the pygame framework to support a library of func-
tions that I’ve written to make our programs more interesting. I’ve called the library
“snaps” because it lets you get things done “in a snap.” Every now and then we’ll learn
about some new snaps functions you can use. The snaps we’ll use in this chapter make
it really easy to add text, images, and sounds to your programs.

Adding the Pygame library
To start, we need to add the Pygame library to our Python installation. Adding
libraries to Python is very easy; you use the pip program to do this. The pip program
is supplied with your Python installation. It fetches library files and adds them to your
Python installation.

If you’re using Windows 10, you run the pip program from the Windows 10 PowerShell
command prompt. This is like the Python Shell part of IDLE, except that the com-
mands you type can be used to start other windows programs. You can open the Pow-
erShell command prompt by right-clicking the Windows Start button at the bottom
left of your screen and selecting Windows PowerShell from the menu that appears.

This should cause a new window to open on your desktop. To install Pygame, issue the
following command:

py -m pip install pygame --user

The pip program displays a progress bar as it works, followed by a success message.
Figure 3-18 shows a successful installation of pygame. You only have to install
pygame once. It is made part of your Python installation.

Figure 3-18 Installing pygame

The pip command to install pygame on Apple Mac or Linux machines is slightly
different. You run this command from a Terminal window:

python3 -m pip install pygame --user

Further installation help can be found at http://www.pygame.org/wiki/GettingStarted

http://www.pygame.org/wiki/GettingStarted

66 Chapter 3 Python program structure

Snaps functions
The snaps library is a Python program file held in the same folder as the example pro-
grams for each chapter. The file contains all the functions we’ll use. If you want to use
snaps in another folder, simply copy the file snaps.py into the folder.

Displaying text
The snaps display_message function takes a string of text and displays the string in a
new window on your display, as shown in Figure 3-19.

EG3-04 hello world

import snaps import *

snaps.display_message('hello world')

Figure 3-19 Displaying “hello world”

Import all the functions in the snaps library

Display a message on the screen

67Adding some snaps

Python functions support optional arguments, which are values you can use to provide
additional information about the way you want a function to work. We’ll explore these
in detail in Chapter 7. The display_message function provides optional arguments you
can use to select the size, color, and alignment of the text you want to display:

snaps.display_message('This is smaller text in green on the top left',

 color=(0,255,0),size=50,horiz='left',vert='top')

The text color is expressed as three values: one for red, one for green, and a third value
for blue. The largest possible value for any color is 255. Increase the size value to make
your text larger. The display_message function will generate an error if the text won’t fit
on the display. You can use the attribute horiz to align text to the left, right, or center of
the screen. You can use the attribute vert to align text to the top, bottom, or center of
the screen. The best way to find out how to use these arguments is to experiment with
the function and see what happens.

Displaying images
The display_image function takes the name of an image file and displays that image
on the screen. The image is scaled to fit the screen. The image file must be in the same
folder as the program.

EG3-05 housemartins

import snaps

snaps.display_image('Housemartins.jpg')

snaps.display_message('Hull Rocks',color=(255,255,255), vert='top')

The image file can be either a png or a jpeg image. If the file cannot be found, the
function will generate an error. You can display text on top of an image (as seen in
Figure 3-20) if you call the display_message function after the call of display_image.

68 Chapter 3 Python program structure

Figure 3-20 Displaying images

Making sounds
The play_sound function takes a file in the wav audio format and plays it through the
speaker on your computer.

EG3-06 Ding

import snaps

snaps.play_sound('ding.wav')

The audio file must be in the same folder as the program. The above program plays
a ding sample that I created using a wooden spoon and a pan half full of water. This
sounds good to me, and might be useful as an alarm sound for an egg timer.

If you want to work with audio files to prepare them for use in your programs, I
strongly recommend the Audacity program, which you can download for free from
www.audacityteam.org/.

http://www.audacityteam.org/

Make the “High–Low” and “Nerves of Steel”
party games
At the beginning of this book, I said that programming is as easy (or difficult) as organizing
a party. With that in mind, here are a couple ideas for Python programs that you can use for
entertainment at your next party.

You can use the random number generator and the sleep function to make a high–low party
game. The game works like this:

1. The program displays a number between 1 and 10, inclusively.

2. The program then sleeps for 20 seconds. While the program is asleep, the players are
invited to decide whether the next number will be higher or lower than the number just
printed. Players who choose “high” stand on the right. Players who choose “low” stand on
the left.

3. The program then displays a second number between 1 and 10, and anyone who was
wrong is eliminated from the game. The program is then re-run with the players that are
left until you have a winner.

This game can get very tactical, with players taking a chance on an unlikely number just so
that they will be one of the people to go forward to the next round.

Another use for the random number generator and the sleep function is to make a “Nerves of
Steel” game. This game works like this:

1. The program displays “Players stand.”

2. The program sleeps for a random time between 5 and 20 seconds. While the program is
sleeping, players can sit down. Keep track of the last person to sit down.

3. The program displays “Last to sit down wins.” Players still standing are eliminated, and
the winner is the last person to sit down.

MAKE SOMETHING HAPPEN

69Adding some snaps

Using snaps in your programs
You can use the snaps functions to make an egg timer and some big-screen versions
of the programs that we’ve already written. I’ve supplied some background graphics
that you might find useful in the code sample folder for this chapter, although it’s
much more fun to draw your own.

70 Chapter 3 Python program structure

What you have learned
In this chapter, you’ve learned the difference between executing Python statements
using the Python Shell part of IDLE and creating complete Python programs. You’ve
discovered that a program is a sequence of Python statements stored in a file on your
computer. You can use the IDLE program to create files containing Python scripts
that are stored on the computer and can be loaded, edited, and run from within the
IDLE environment.

When a program wants to communicate with the user, it can use the print function
to display strings of text and numeric values. A program can also use other functions
that are made available by use of the import command, which imports the library that
contains the functions. The random library holds a function called randint, which can
be used to generate random numbers, and the time library contains a function called
sleep, which can be used to pause program execution (but not stop the computer) for
a specified duration.

Programs can (and should) contain comments that are ignored by the Python system
but can provide valuable information to someone reading the program text. A com-
ment starts with the # (hash or number sign) character and continues on to the end of
that line.

The snaps library provides a set of functions you can use to display graphics and text,
and play sounds in your Python programs. It’s not a formal part of the language, but
the functions can be useful when you want to impress someone with your program-
ming skills.

To reinforce your understanding of this chapter, you might want to consider the fol-
lowing “profound questions” about computers, programs, and programming.

Would a user ever use the Python Command Shell?

The Python Command Shell is very useful for programmers. It lets us “play with”
Python statements and see their results immediately, rather than having to run an
entire program and view the results. However, it is very unlikely that a user would ever
need to do this. You can think of the Python Shell as a special tool for programmers; a
user would just use the Python program.

What would happen if two libraries contained a function with the same name?

It sounds like this might be a problem, but in fact, there is nothing to worry about
here. Remember that when we use a function from a library, we put the library name
in front, so, for example, we would use “user.menu” and “system.menu” to refer to
menu functions in two different modules.

71What you have learned

Can I make comments that are more than one line long?

Some programming languages (for example, Java and C#), let you write “multi-line”
comments in programs. As the name implies, a multi-line comment spans several lines
of the program. Such comments are used to provide a more exhaustive explanation
of a program than is possible with a single-line comment. Python does not allow this.
The only way you can create a comment that is several lines long would be to start
each successive line with a # character.

This sounds like it might be a problem, and might get in the way of writing well-doc-
umented programs. However, many Python editors, including IDLE, have a command
that lets a programmer “comment out” a large block of text that has been selected in
the editor. When you select the command, the editor places a # at the beginning of
each statement for you. Later in the book, we’ll look at clever ways you can add strings
of text to code that you write that can be picked up and used to help a programmer.

Can a Python program run on any computer?

The answer is, “Yes, but you might have to install the Python language.” The standard
operating system distributions for some computers (for example, the Raspberry Pi and
many other Linux systems), already have Python installed. However, other computers
may not have the language installed. The good news is that the Python language is a
free download, and there are versions of Python for just about every operating system.

Is the Python language the same on every machine?

The answer is, “Yes, but not all libraries are available for all machines.” The actual spec-
ification of the Python language (that is, how you write programs and what they do)
is common to all computers. But remember that there are two versions of Python in
common use: Version 2.7 and Version 3.6. Libraries written for one version of Python
may not be available for the other.

However, not all Python functions libraries are available on all machines. For example,
a Python library called “winsound” can be used to play sounds on Microsoft Windows
PCs, but, unfortunately, this library is not available for any other operating systems.

Can I use snaps in my programs?

Absolutely. Remember that snaps are not actually part of Python but are provided to
give you a good starting place for writing impressive programs. There are many other
libraries that you might like to use, and we’ll cover these as we explore all the things
you can do with Python.

4
Working with

variables

74 Chapter 4 Working with variables

Variables in Python
We’ve seen how Python lets us work with numbers and text. We can use Python as
a calculator; we can type calculations as expressions, and Python will evaluate them
and display the result. A calculator usually has a memory function that you can use to
avoid typing in the same value repeatedly. You can store a frequently used value or a
running total in memory and recall it with the touch of a button.

A variable is how we add memory to our Python programs. You can think of a variable
as a storage location you can refer to by name. You create a variable in a Python pro-
gram by thinking of a name for the variable and then putting a value in the variable.

total = 0

This Python statement creates a variable with the name total. This variable could be
used to hold the total of a sequence of numbers. When Python sees the word total in
the program, it fetches the contents of the variable called total.

The statement above is called an assignment, which is not a piece of homework
(thankfully); instead, it’s the act of assigning one thing to another. Figure 4-1 shows
the anatomy of an assignment statement like this.

total
variable

(thing to which a value will be assigned)

=
equals

(means assign)

0
expression

(value to assign)

Figure 4-1 Anatomy of an assignment statement

The box on the left of the assignment shows the variable to be assigned. The symbol
in the middle is the equals operator, which means “assignment.” The box on the right
is an expression, which gives the value to be assigned. The expression can be as com-
plicated as you like.

total = us_sales + world_wide_sales

This statement would set the value of the variable total to the result of adding the
contents of the variable us_sales to the contents of the variable world_wide_sales.

Working with variables
Let’s start up the IDLE program and do some work with the Python Shell part of IDLE. We can
begin by creating a total variable.

>>> total = 0

If you type the above variable into the Python Shell part of IDLE , you’ll notice something
different about the way it behaves. When we give Python something to work out, it calculates
the answer and displays it. However, if we set a value in a variable (as we did above), Python
doesn’t display an answer. Instead, Python performs the assignment and then awaits another
command. We could ask Python to tell us the contents of total simply by entering the name
of the variable into the Python Shell part of IDLE.

>>> total

0

Remember that in Chapter 2, when we entered the value 2, Python returned that value. In the
above statement, we’ve given Python the value of total, which Python has worked out and
returned a value of 0. Now, let’s try something a little more complex.

>>> total = total+10

This expression might appear confusing. If you’ve worked with mathematical equations,
you’ll remember that the equals character means that one value is equal to another. From
a mathematical point of view, the statement is obviously wrong, because the total cannot
equal the total plus 10. However, it’s important to remember that in Python, the equals
operator means “assign.” So, the expression total+10 is evaluated on the right side and then
is assigned to the variable on the left side.

In other words, you’ve added 10 to the contents of total. You can check the value of the
total variable to prove this.

>>> total

10

75Variables in Python

MAKE SOMETHING HAPPEN

76 Chapter 4 Working with variables

This sequence of actions has performed some simple data processing. The data going
into the process was the value in the variable total, which emerged from the process
with its value increased by 10.

Python names
We used the name total for the first variable that we created. When you write a
program, you must come up with names for the variables in that program. Python has
rules about the way you can form names:

A name must start with a letter or the underscore character (_) and can contain let-
ters, numerals (digits), or the underscore character.

The name total is a perfectly legal name for a variable, as is the name xyz. However,
the variable 2_be_or_not_2_be would be rejected with an error, because it starts with
a numeral instead of a letter or the underscore character. Also, Python views upper-
case and lowercase letters differently; for example, FRED is regarded by Python as a
different name from fred.

PROGRAMMER’S POINT

Create meaningful names
I find it terribly surprising that some programmers use variable names such as X21 or silly
or hello_mom. I don’t. I work very hard to make my programs as easy to read as possible.
So, I’ll use names such as length or, perhaps even better, window_length_in_inches.
The designers of Python have written a style guide that sets out how you should format
your variable names. The names we are creating should be expressed as lowercase words
separated by the underscore character. You can find more details here: https://www.
python.org/dev/peps/pep-0008/#naming-conventions

Some other programming languages advise the use of camel case to separate the words in
their variable names, so they create variables that look like this: windowLenghInInches.
This is called camel case because the capital letters in the words cause humps, like the back
of a camel. Either standard works well, but if you’re writing Python I’d advise you to stick
with the Python way of doing things.

I don’t care which method you choose to make up your variable names; I only care that
you strive to create names with meaning. If the name applies to a particular thing, then
identify that thing. And if that thing has particular units of measurement, then add
those, too. For example, if I was storing the age of a customer, I’d create a variable called
customer_age_in_years.

https://www.python.org/dev/peps/pep-0008/#naming-conventions
https://www.python.org/dev/peps/pep-0008/#naming-conventions

Typing errors and testing
We’ve seen what can happen if you type something that Python doesn’t understand. You get
an error message, which is usually displayed in red. However, you can introduce other errors
into your Python code that are difficult to find.

Total = total + 10

Question: Can you identify an error in the statement above, which is supposed to add 10 to
the variable total?

Answer: Earlier in this chapter, we used a statement that looks like this to add 10 to the
value in a variable called total. It looks like we are doing the same thing here, but that’s
not the case. There is a crucial difference between this statement and the one we saw
earlier. This statement assigns the result of the calculation to a newly created variable
called Total. The statement would not generate any complaints from Python when it
runs, but it would also not update the value of total correctly.

This is a logic error. The statement is completely legal as far as Python is concerned, but
it will do the wrong thing when it runs. These errors are very dangerous because Python
doesn’t alert you to their presence; instead, the program just doesn’t work correctly.
Python insists on the use of lowercase letters in variable names precisely to avoid this
type of error.

Question: How do we prevent logic errors?

Answer: The only way to attack logic errors is to use testing. We need to run a program
with some known values (values for which we know the total) and then verify that the
answers agree with the test total. If the answers make sense, we can start to build confi-
dence in our code. However, even if a program passes all the tests, it could still be faulty
because there might be a fault that is not picked up by those tests.

Tests don’t prove that a program is good; tests simply prove that a program is not as bad
as it would be if it had failed the tests.

Tests work best if they are added at the time the program is created. We’ll talk about
testing strategies every time we make a new program.

total = Total + 10

CODE ANALYSIS

77Variables in Python

Python allows names of any length, and the length of a variable name does not affect
the speed of the program, meaning longer variable names don’t slow down the program.
However, very long names can be a bit hard to read, so you should try to keep them down
to the lengths shown in the examples.

Question: The statement above also contains a misspelling of a variable named total. How-
ever, this time the name on the right-hand side of the equals is misspelled.

What will happen when this program runs?

Answer: Python will refuse to run this statement. It will tell you that you are using a
variable with the name Total, which it hasn’t seen yet. Sometimes typing mistakes will be
detected before your program runs, but other times they might not.

You might be thinking that you’ve been set up to fail because I’ve suggested that you
use long, meaningful names, and typing those long, meaningful names creates more
opportunities for mistakes. For now, one way around this problem is to use the text copy
feature of your editor to copy names from one part of the program to another.

Later, we’ll see other ways that a programmer’s editor can prevent you from making
typing errors by automatically completing names as they are typed.

Make a “Self-Timer” party game
One of the problems with making programs is that when people use them, they come up
with ideas to make them better. And that means as the programmer, you must do more
work. In this “Make Something Happen,” we’ll look at improving a program we created in the
previous chapter.

Refer to the “Nerves of Steel” party game that we created at the end of Chapter 3. In the
game, players must remain standing right up to the moment before they think a random
timer will expire.

However, one suggestion I’ve received is that the game might require more skill if the pro-
gram told the players how long they had to stand. The game could be renamed “Self-Timer,”
and the winner would be the person who was best at keeping track of time. The sequence of
actions the program must follow are:

1. Set the time to remain standing to a random number.

2. Display the time to remain standing.

3. Sleep for the time to remain standing.

4. Display the “Time Up” message

MAKE SOMETHING HAPPEN

78 Chapter 4 Working with variables

The program will need to use a variable to store the random number of seconds for which the
players must remain standing. The name stand_time would work well for such a variable.

EG4-01 Self Timer

import time

import random

print('Welcome to Self Timer')

print()

print('Everybody stand up')

print('Stay standing until you think the time has ended')

print('Then sit down.')

print('Anyone still standing when the time ends loses.')

print('The last person to sit down before the time ended will win.')

stand_time = random.randint(5, 20)

print('Stay standing for', stand_time, 'seconds.')

time.sleep(stand_time)

print('****TIME UP****')

Get a random stand time and store it

Display the stand time

Sleep for the stand time

Display the finished message

79Working with text

Working with text
In the previous chapter, we saw that we can write expressions that work with text. It
turns out that we can also create variables that can hold text.

customer_name = 'Fred'

This statement looks exactly like the statement we used to create the total variable
except that the value being assigned is a string of text. The variable customer_name is
different from the total variable in that it holds text rather than a number. We can use
this variable anywhere we would use a string.

message = 'the name is '+customer_name

Text and numeric variables
Python keeps track of the contents of each variable and will not allow them to be com-
bined incorrectly. We can use the Python Shell part of IDLE to experiment with string and
number variables

>>> customer_age_in_years = 25

>>> customer_name = 'Fred'

Start by entering the above two lines into the Python Shell part of IDLE. Python creates two
variables. The first is called customer_age_in_years and holds the integer value 25. The
second is called customer_name and holds the string 'Fred'. The following code adds these
two variables.

>>> customer_age_in_years+customer_name

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 customer_age_in_years + customer_name

TypeError: unsupported operand type(s) for +: 'int' and 'str'

We saw the same kind of error when we tried to add a string to a number in Chapter 2.
Python checks to make sure the operands (the elements on each side of the + operator)
make sense. Python doesn’t know how to add an integer and a string, so this error is Python’s
response. If we try to do something silly with our variables, there is a good chance that
Python will notice. Now try this:

>>> customer_age_in_years='Fred'

You might think that this statement should generate an error. The statement is trying to put
a string into a variable that Python has created to hold a number. Unfortunately, no error is
produced. Instead, Python discards the old, numeric version of the variable and makes a new
variable that holds a string. Personally, I don’t like this behavior, but it is just the way that Python
works. The same thing happens if you put a number into the customer_name variable.

MAKE SOMETHING HAPPEN

80 Chapter 4 Working with variables

In the expression being assigned, the text in the variable customer_name is added onto
the end of the string "the name is ". As customer_name currently holds the string
"Fred" (we set this in the previous statement), the above assignment would create
another string variable called message which contains "the name is Fred".

81Working with text

Marking the start and end of strings
When I first saw how strings worked in Python, I wondered how to enter text contain-
ing a single quote. For example, let’s say you want to print the message, “It’s a trap.”
We know Python uses the single quote character to define the limits (or delimit) of
a string of text. However, the single quote in the word “it’s” would confuse Python,
making it think the string had ended early.

One way to solve this problem is to enclose the string with double quotation marks
rather than single quotation marks.

print("It's a trap")

Python lets you use either kind of quotation mark (single or double) to delimit a string
of text in a program. This works, but of course the next thing I want to ask is, “How do
you enter text that contains both single and double quotes?” The designer of Python
thought of that, too, and allows us to use “triple quotes” to delimit a string. A triple
quote is three single- or double-quote characters in a row:

print('''...and then Luke said "It's a trap"''')

This statement prints this message:

...and then Luke said "It's a trap"

Triple quoted strings look a bit cumbersome, but they have another advantage over
“ordinary” strings. Any new lines in a triple-quoted string are made part of the string.
To see how this might be useful, consider the instructions for the “Nerves of Steel”
party game that we looked at in Chapter 3.

print('Welcome to Nerves of Steel')

print()

print('Everybody stand up')

print('Stay standing as long as you dare.')

print('Sit down just before you think the time will end.')

To produce these instructions, I had to write several print statements. By using a
triple-quoted string, I can make this a lot easier.

82 Chapter 4 Working with variables

print('''Welcome to Nerves of Steel

Everybody stand up

Stay standing as long as you dare.

Sit down just before you think the time will end. ''')

The print statement now spans several lines. When the program runs, the new lines are
printed so that the text looks as it did before, although it now spans several lines. Note
that the blank line below the heading is also preserved when the print is performed.

One thing to remember is that you must use matching delimiters to start and end a
string. If you start the string with triple quotes, you must end it that way, too.

Escape characters in text
Another way to include quote characters in a string of text is to use an escape
sequence. Normally, each character in a string represents that character. In other
words, an A in a string means ‘A’. However, when Python sees the escape character
—the backslash (\) character — it looks at the text following the escape character to
decide what character is being described. This is called an escape sequence. There
are many different escape sequences you can use in a Python string. The most useful
escape sequences are shown in the following table.

ESCAPE SEQUENCE WHAT IT MEANS WHAT IT DOES

\\ Backslash character (\) Enter a backslash into the string

\’ Single quote (‘) Enter a single quote into the string

\” Double quote (“) Enter a double quote into the string

\n ASCII Line Feed/New Line End this line and take a new one

\t ASCII Tab Move to the right to the next tab stop

\r ASCII Carriage return Return the printing position to the start of the line

\a ASCII Bell Sound the bell on the terminal

Python includes other escape sequences, but these will suffice for now.

If you’re wondering what ASCII (American Standard Code for Information Interchange)
means, it is a mapping of numbers to printed characters. It was developed in the early

Investigating escape sequences
The best way to learn about escape sequences is to use them from the Python Shell.

print('hello\nworld')

Question: What do you think the above statement would print?

Answer: It would print out “hello” on one line and “world” on the next line. The new line
escape sequence will cause the program to print on successive lines.

print('Item\tSales\ncar\t50\nboat\t10')

CODE ANALYSIS

83Working with text

1960s for use by computers and persists to this day. (In Chapter 2, we learned that
ASCII is the standard that maps the letter W to the decimal value 84).

ASCII is a perfectly fine standard if you don’t want to print more than 100 or so
different characters. However, because many modern languages use more than
100 characters, UNICODE has become the new standard. UNICODE allows for many
more characters, emojis, and emoticons. Some Python escape sequences produce
UNICODE characters from our programs. UNICODE characters are frequently used in
Graphical User Interfaces (GUIs)..

Not all the escape sequences above work on all computers. Also, their functions are
not always consistent from one computer to another. For example, the \a escape
sequence, which means ASCII Bell, was intended to sound the bell on a mechanical
computer terminal. However, if you print this sequence, there is no guarantee that the
computer you’re using will make a sound. The paragraph return character, \r, which is
supposed to send the print head of a computer terminal back to the start of the line, is
not very useful and may not do anything on some computers.

The most useful escape sequences are those that you can use to print quotes and the
backspace character. You can also use the new line character (\n) to make new lines in
strings you print.

Within Python programs, the end of a line of text is always marked by a single new
line character. The underlying operating system might work differently, for example
the Windows operating system uses the sequence “\r\n” (a return followed by a new
line feed) to mark the end of each line of text in a file. The Python system performs
automatic translation of line endings to match the computer system being used, so
our programs can always use a single new line character to mark the end of a line.

Question: What do you think the above statement would print?

Answer: The string to be printed contains tabs and new line characters. It would, in fact,
print a tiny table telling us how many cars and boats we had sold:

Item Sales

car 50

boat 10

This form of layout looks quite attractive, but the precise arrangement of the items that
are printed depends on how your computer responds to the tab character. Later in the
book, we’ll investigate better ways of formatting the output from Python programs.

Question: How could I use Python escape sequences to print out this message?

...and then Luke said “It’s a trap.”

Answer: We can use the escape sequence \’ to print out the apostrophe (single quote) in
the word It’s and then enclose the whole string in single quote characters.

print('...and then Luke said "It\'s a trap"')

We could also use escape sequences to print the double-quote characters, but we don’t
have to because the statement above uses single quotes to delimit the string.

Question: Must I use an escape sequence to print a backslash character?

Answer: Yes, I’m afraid you do.

84 Chapter 4 Working with variables

Read in text using the input function
Up until now, all our programs have worked with values stored in the Python code
itself. These are called literal values because they are literally “just there” in the code.
We use the input function to make a “complete” program that takes in data, does
something with it, and then produces a result.

name = input()

Use input to make a “greeter” program
We can use the input function in the Python Shell, but it’s most useful in a program. We can
start by making a simple program that asks for our name and then gives us a personalized
greeting. Use IDLE to create a new program file and then enter the following program code.

name = input('Enter your name please: ')

print('Hello', name)

Run the program, and save it in a file named “greeter.”

When the program runs, it will print out the prompt, request the name, and then print “hello”
to that name. The name text is entered as a string. Enter the program and run it. Type in your
name and have your computer talk to you.

MAKE SOMETHING HAPPEN

85Working with text

This statement would pause the program and wait for the user to type in a string and
press the Enter key. The string of text is stored in the variable called name. We can
make the program display a prompt for the user by adding a string to the call for the
input function.

name=input('Enter your name please: ')

The name variable will contain whatever string the user types in. If the user just presses
the Enter key without typing anything, the name variable will contain an empty string.

You can also use the input statement to pause your program so that the user can read
the results.

input('Press Enter to continue')

In the statement above, the result of the call to the input function is ignored.

Python versions and the input function
One thing about Python that gives me nightmares is how input works in different versions
of the language. The input examples we looked at will work very well, but only if you are using
version 3.6 of Python. If you’re using version 2.7, you’ll get errors.

Traceback (most recent call last):

 File "<pyshell#7>", line 1, in <module>

 name=input('Enter your name please: ')

 File "<string>", line 1, in <module>

NameError: name 'Rob' is not defined

The reason for this error is that the input statement works differently in earlier versions of
Python. Rather than just taking what you type and storing it in a variable, the input function
in Python 2.7 tries to evaluate the expression.

In the case of the above error, I entered my name “Rob.” Python tried to look for a variable
called “Rob” to use in an expression, didn’t find one, and produced the error.

In Python 2.7, we would use the function raw_input to read in a string of text from the user:

name = raw_input('Enter your name please: ')

This statement in version 2.7 produces the same result as the input statement in version 3.6.

One final thing to keep in mind is that the raw_input function does not exist in Python 3.6,
which makes things even more confusing. The bottom line is that if your program suddenly
starts to report problems with the input process, make sure you’re using correct functions for
your version of Python. This is particularly important when other people start using programs
you’ve written.

If you think the ability to evaluate what the user types in as a Python statement sounds fun,
it turns out that it is; you can use the eval function to do just that. The eval function can be
used to evaluate any string of text, not just those entered by the user.

WHAT COULD GO WRONG

86 Chapter 4 Working with variables

87Working with numbers

Working with numbers
Convert strings into integer values
The input function returns a string of text, which is fine if we just want to read names.
However, it is not so useful if we want to read in numbers. For instance, we might want
to modify the egg timer we created in Chapter 2 so that the user can enter the num-
ber of seconds that the timer must run. This would allow the user to customize their
egg from raw (0 seconds) to hard boiled (600 seconds). Python provides a function
called, not surprisingly, int. The int function accepts a string and returns the number
in that string.

time_text = input('Enter the cooking time in seconds: ')

time_int = int(time_text)

The first statement uses the input function to read in a string from the user. The
second statement uses the int function to convert this string into a number that can
be used to set the length of time the program sleeps while the egg is cooked. The final
egg timer program looks like this:

EG4-02 User Configurable Egg Timer

import time

time_text = input('Enter the cooking time in seconds: ')

time_int = int(time_text)

print('Put the egg in boiling water now')

time.sleep(time_int)

print('Take the egg out now')

You could use this program anywhere you want to have a configurable timer or alarm.
You just change the messages displayed to the user.

Enter the time as a text string

Convert the text string into a number

Reading numbers
Let’s look at this program and consider a few questions.

Question: How many variables are used in the program above?

Answer: There are two variables. One is called time_text and contains a string; the
other is called time_int and contains an integer. I didn’t have to use these particular
names; I could have called the variables x and y, but I think these names make the pro-
gram clearer.

Question: Could you write the program without using the time_text variable?

Answer: Yes, I could. The input function returns a string that I could feed directly into
the int function.

time_int = int(input('Enter the cooking time in seconds: '))

I’m not a huge fan of compressing programs like this though. They don’t make the
program easier to understand, and they have a negligible effect on the speed of the
program or the amount of memory used when it runs. This statement would also make it
impossible for the program to display the string entered by the user because that string is
not stored anywhere.

 Question: What do you think will happen if the user enters something other than a number?

Answer: Try it using the Python Shell part of IDLE.

>>> x = int('kaboom')

This Python statement will attempt to convert the string ‘kaboom’ into a number and
store it in a variable called x. As you might expect, this will not end well.

Traceback (most recent call last):

 File "<pyshell#32>", line 1, in <module>

 x = int('kaboom')

ValueError: invalid literal for int() with base 10: 'kaboom'

This looks worrying because it means if the user types in text rather than a number, the
program will fail. For now, we’ll just have to live with this problem, but later in the book
we’ll look at how our programs can deal with this error and give the user another chance
to enter a number.

CODE ANALYSIS

88 Chapter 4 Working with variables

Whole numbers versus real numbers
You can learn about the difference between whole numbers and real numbers by looking at
a few situations in which they might be used.

Question: I’m building a device that can count the number of hairs on your head. Should I
store this value as a whole number or as a real number?

Answer: This should be a whole number because there is no such thing as half a hair.

Question: I want to use my hair-counting machine on 100 people and determine the average
number of hairs on all their heads. Should I store this value as a whole number or as a real
number?

Answer: When we work out the result, we’ll find that the average includes a fractional
part, which means that we should use a real number to store it.

Question: I want to keep track of the price of a product in my program. Should I use whole
numbers or real numbers?

Answer: This is very tricky. You might think that the price should be stored as a real
number—for example, $1.50 (one and a half dollars). However, you could also store the
price as the whole number, 150 cents. The type of number you use in a situation like this
depends on how that number is used. If you’re just keeping track of the total amount of
money you take in while selling your product, you can use a whole number to hold the
price and the total. However, if you are also lending money to people to buy your prod-
uct and you want to calculate the interest to charge them, you would need a fractional
component to hold the number more precisely.

CODE ANALYSIS

89Working with numbers

Whole numbers and real numbers
We know that Python is aware of two fundamental kinds of data— text data and
numeric data. Now we need to delve a little deeper into how numeric data works.
There are two kinds of numeric data—whole numbers and real numbers. Whole num-
bers have no fractional part. Up until now, every program that we have written has
made use of whole numbers. A computer stores the value of a whole number exactly
as entered. Real numbers, on the other hand, have a fractional element that can’t
always be held accurately in a computer.

As a programmer, you need to choose which kind of number you want to use to store
each value.

90 Chapter 4 Working with variables

PROGRAMMER’S POINT

The way you store a variable depends on what you want to do with it
It seems obvious that you would use a whole number to count the number of hairs on your
head. However, one could argue that we could also use a whole number to represent the
average number of hairs on 100 people’s heads. This is because the calculated average
would be in the thousands. Fractions of a hair would not add much useful information,
so we could drop any fractional parts and round to the nearest whole number. When you
consider how you are going to represent data in a program, you must take into account
how it will be used.

Real numbers and floating-point numbers
Real number types have a fractional part, which is the part of the number after the
decimal point. Real numbers are not always stored exactly as they are entered into
Python programs. Numbers are mapped to computer memory in a way that stores
a value that is as close as possible to the original. The stored data is often called a
floating-point representation. You can increase the accuracy of the storage process
by using larger amounts of computer memory, but you are never able to hold all real
values precisely.

This is not a problem, however. Values such as pi can never be held exactly because
they “go on forever.” (I’ve got a book that contains the value of pi to 1 million decimal
places, but I still can’t say that this is the exact value of pi. All I can say is that the value
in the book is many times more accurate than anyone will ever need.)

When considering how numbers are stored, we need to think about range and
precision. Precision sets out how precisely a number is stored. A particular float-
ing-point variable could store the value 123456789.0 or 0.123456789, but it can’t store
123456789.123456789 because it does not have enough precision to hold 18 digits.
The range of floating-point storage determines how far you can “slide” the decimal
point around to store very large or very small numbers. For example, we could store
the value 123,456,700, or we can store 0.0001234567. For a floating-point number
in Python, we have 15 to 16 digits of precision, and we can slide the decimal point
308 places to the right (to store huge numbers) or 324 places to the left (to store
tiny numbers).

The mapping of real numbers to a floating-point representation does bring some
challenges when using computers. It turns out that a simple fraction such as 0.1 (a
tenth) cannot be held accurately by a computer because of the way values are held.
The value stored to represent 0.1 will be very close to that value, but not the same. This
has implications for the way we write programs.

Floating-point variables and errors
We can find out more about how floating-point values work by doing some experiments
using the Python Shell. If we just type numeric expressions, we can view the results that
Python calculates.

Question: What happens if we try to store a value that can’t be held accurately as a floating-
point value?

Answer: We know that the value 0.1 can’t be held accurately in a computer, so let’s enter
that value into the Python Shell and see what comes back.

>>> 0.1

0.1

At this point, you might think that I’ve been lying to you because I said that the value
0.1 can’t be held accurately, and now this example shows Python returning the value
0.1. However, I’m not lying to you—Python is. The Python print routine “rounds”
values when it prints them. In other words, it says that if the number to be printed is
0.10000000000000000551115 or thereabouts (which it is), then it will just print 0.1.

Question: Does this “rounding” really happen?

Answer: At the moment, you’ve just got my word for it that values are rounded when
printed and that errors are being hidden from us as a result. However, if we per-
form a simple calculation, we can introduce an error that is large enough to escape
being rounded. Enter the following calculation into the Python Shell and note what
comes back.

>>> 0.1+0.2

0.30000000000000004

The result of adding 0.1 to 0.2 should be 0.3. But, because the values are held as binary
floating-point values, the result of the calculation contains an error large enough to escape
being rounded. It turns out that our highly expensive computer really can’t get its sums right!

CODE ANALYSIS

You might think that your all-powerful computer should be able to hold all values
precisely. It comes as a bit of a shock to discover that this is not true and that a simple
pocket calculator can outperform your powerful PC.

91Working with numbers

Working with floating-point variables
We know Python automatically creates variables for use in our programs. The type of a vari-
able is determined by what a program stores in it.

name = 'Rob'

age = 25

CODE ANALYSIS

92 Chapter 4 Working with variables

However, this lack of accuracy is not a problem in programming because we don’t
usually have incoming data that is particularly precise anyway. For example, if I refine my
hair counting device to measure hair length, it would be very difficult for me to measure
hair length with more than a tenth of an inch (2.4 millimeters) of accuracy. For hair data
analysis, we need only around three or four digits of accuracy. It is very unlikely that you
will ever process any data that requires the 15 digits that Python can give you.

It is also worth noting at this point that these issues have nothing to do with Python.
Most, if not all, modern computers store and manipulate floating-point values using
a standard established by the Institute of Electronic and Electrical Engineers (IEEE) in
1985. All programs that run on a computer will manipulate values in the same way, so
floating-point numbers in Python are no different from those in any other language.

The only difference between Python floating-point values and those in other lan-
guages is that a floating-point variable in Python occupies 8 bytes of memory, which
is twice the size of the float type in the languages C, C++, Java, and C#. A Python float-
ing-point variable equates with a double precision value in those languages.

If you really, really want to store things with even more accuracy (and I think this is terribly
unlikely), you should look at the decimal and fraction libraries supplied with Python.

PROGRAMMER’S POINT

Don’t confuse precision with accuracy
It is very important to remember that numbers don’t become more accurate just because
they are stored with more precision. Scientists in a laboratory measuring the length of ant
legs will not be able to do this to more than a few digits of accuracy (unless they have some
amazing technology), so there is no point in them using much higher precision to store and
process their results. Using higher precision slows down the program and means that the
variables take up more space in memory.

The above statements create two variables. The variable name is of string type, because it
has been assigned a string of text. However, the variable age is of integer type, because it has
been assigned an integer.

We can use the Python Shell part of IDLE to learn how floating-point variables work.

Question: How do I create a floating-point variable?

Answer: We can create a floating-point variable by assigning a floating-point expression
to the variable.

>>> x = 1.5

This statement creates a floating point variable called x which contains the value 1.5.
We can view the contents of the variable by just entering its name.

>>> x

1.5

Question: What happens if I assign an integer to a floating-point variable?

Answer: We can investigate this behavior by creating a new variable.

>>> y = 1.0

This statement creates a variable called y that contains the integer value 1. But is y an
integer or floating-point variable? We can find out by viewing the contents of y.

>>> y

1.0

Python has printed out the value with a fractional part (which is zero). This indicates that
the value is a floating-point value. In other words, the presence of a decimal point in a
printed value tells us that the value is floating point. The value is always floating point
when a decimal is included, even if there are no decimal places.

Question: What about floating-point and integer calculations?

Answer: We can investigate the results of calculations by entering a few and then
looking at the results.

>>> 2+2

4

93Working with numbers

Recall from earlier chapters that when we add two integers together, we get an integer result.

>>> 2.0+2.0

4.0

This is the same calculation, but this time Python produces a floating-point result
because the operands (the things upon which the + operator is working) are both float-
ing-point values.

>>> 2.0+2

4.0

It turns out that when an expression contains one floating-point value, the result of the
calculation is automatically converted to a floating-point value. Generally, if the expres-
sion contains integers, it will generate an integer result. If the expression contains one
floating-point value, the expression will generate a floating-point result.

One exception to the “integers make integers” rule is when we divide one integer by another.

>>> 1/2

0.5

The above statement divides one integer by another. The / (slash) character is how we
denote division in Python programs. In this case, the result of dividing 1.0/2.0 is to pro-
duce a floating-point result of 0.5.

Python versions and integer division
Integer division in different versions of Python is another situation in which the strangeness
of Python makes me tear my hair out. Above, I just told you that dividing an integer by an
integer produces a floating-point result. This is true in Python version 3.6, the version we’re
using for the examples in this book. However, in Python 2.7, this is not the case. In Python 2.7,
the result of dividing an integer by an integer is another integer.

>>> 1/2

0

WHAT COULD GO WRONG

94 Chapter 4 Working with variables

The value of 1/2 is a half, which can’t be held in an integer, so the result of this calculation is
zero in Python 2.7. In fact, any number less than 1 is truncated to zero in this calculation. That
means the result of 9/10, which should be 0.9, also turns out to be zero. This can result in sums
being quite different from the values we might expect.

This raises the horrible prospect of Python programs that work correctly in Python 3.6
producing completely wrong answers when they run in older versions of Python. This has
happened to me on numerous occasions. The best advice I can give is to always put a decimal
point on a value if you want it to generate floating-point results when used in calculations.

I feel bad telling you this, but I’d feel worse keeping it a secret. You can get a Python 2 pro-
gram to behave the same way as Python 3 by telling it to use the updated division routines:

from __future__ import division

You could give this command at the start of a program to make Python 2 division behave the
same as Python 3 division.

95Working with numbers

Convert strings into floating-point values
The float function is used to convert values into floating-point values. A program can
use the float function to convert a string of text into a floating-point value. It works
in the same way as the int function:

time_text=input('Enter the cooking time in seconds: ')

time_float=float(time_text)

The statements above could form the basis of an ultra-precise version of the egg timer
program that lets the user time their egg to a fraction of a second. You can find this
program in EG4-03 Ultra-precise Egg Timer.

The program works because the sleep function accepts a floating-point value for the
duration of the delay.

time.sleep(time_float)

This means we can use the sleep function to create very short delays in programs.

Read in the time as a string

Convert the string into a
floating point number

96 Chapter 4 Working with variables

The float function can also be used to convert an integer value into a floating-point
value. This can be useful in older Python programs as a way of forcing the correct
behavior of the divide operator (see the “What Could Go Wrong: Python Programs
and Integer Division” discussion above).

z = float(1)

In the statement above, the variable z will be of type float, even though the value
being assigned is an integer.

The behavior of float might seem rather familiar. This is because it behaves similarly
to the int function, except that it delivers floating-point results.

Perform calculations
In Chapter 2, we saw that Python expressions are made up of operators and operands.
The operators identify actions to be performed, and the operands are worked on
by the operators. Now we can add a bit more detail to this explanation. Expressions
can be as simple as a single value or as complex as a large calculation. Here are a few
examples of numeric expressions:

2 + 3 * 4

-1 + 3

(2 + 3) * 4

These expressions are evaluated by Python working from left to right, just as you
would read them yourself. Again, just as in traditional math, multiplication and divi-
sion are performed first, followed by addition and subtraction.

Python achieves this order by giving each operator a priority. When it works out an
expression, it finds all the operators with the highest priority and applies them first. It
then looks for the operators next in priority, and so on, until the result is obtained. The
order of evaluation means that the expression 2 + 3 * 4 will calculate to 14, not 20.

If you want to force the order in which an expression evaluates, you can put parentheses
around the elements of the expression you want to evaluate first, as in the final exam-
ple above. You can also put parentheses inside parentheses if you want—provided you
make sure that you have as many opening parentheses as closing ones. Being a simple
soul, I tend to make things very clear by putting parentheses around everything.

Work out the results
Question: See if you can work out the values of a, b, and c when the following statements
have been evaluated:

a = 1

b = 2

c = a + b

c = c * (a + b)

b = a + b + c

Answer: a=1, b=12, c=9. The best way to work this out is to behave like a computer would
and work through each statement in turn. When I do this, I write down the variable values
on a piece of paper and then update each as I go along. Doing this means that you can
predict what a program will do without having to run it.

CODE ANALYSIS

97Working with numbers

It is probably not worth getting too worked up about expression evaluation. Generally
speaking, things tend to be evaluated how you would expect.

Here is a list of some other operators, with descriptions of what they do, and their
precedence (priority). The operators are listed with the highest priority first.

OPERATOR HOW IT’S USED

- Unary minus, the minus that Python finds in negative numbers,

* Multiplication. Note the use of the * rather than the more
mathematically correct but confusing x.

/ Division, because of the difficulty of drawing one number above
another during editing, we use this character instead.

+ Addition.

- Subtraction. Note that we use the same character as for unary minus.

This is not a complete list of the operators available, but it will do for now. Because
these operators work on numbers, they are often called numeric operators. However,
one of them, the + operator, can be applied between strings, as you’ve already seen.

Dumb calculations
Because you can use the division operator in an expression, you can write silly code such
as this:

>>> 1/0

This code tries to divide one by zero, giving a non-sensible result. You might think that this
would cause the computer itself to crash. In the old days, this might have happened. I have
fond memories of a calculator I used to own. If I tried to divide one by zero, it would just keep
counting up, trying to reach a result of infinity. In a Python program, the Python engine will
simply stop your program from going any further.

>>> 1/0

Traceback (most recent call last):

 File "<pyshell#11>", line 1, in <module>

 1/0

ZeroDivisionError: division by zero

WHAT COULD GO WRONG

98 Chapter 4 Working with variables

Convert between float and int
Sometimes a program might need to convert between floating-point and integer
values. A program can do this by using the int function. We’ve already used the int
function to convert strings of text into integer values. To do this, we used the version
of the int function that accepts a string as an input:

i = int('25')

If the int function is supplied with a string containing a number, it will read that num-
ber out of the string. In other words, the statement above will result in the variable i
containing the integer value 25.

Programs can also use the int function to convert a value from floating point to integer.

i = int(2.9)

Calculating a pizza order
You might wonder why you would need to convert floating-point values into integers. Here’s
an example. Rigorous scientific research conducted by me at many hackathons I’ve attended
has arrived at a figure of exactly 1.5 people per pizza. In other words, if I’m catering for 30
students I’ll need 20 pizzas, and so on.

I decided to write a Python program that works out how many pizzas I need to order, given a
particular number of students. The program reads in the number of students, does the calcu-
lation, and then prints the result. This is my first version:

EG4-04 Pizza Order Calculator

students_text = input('How many students: ')

students_int = int(students_text)

pizza_count = students_int/1.5

print('You will need', pizza_count, 'pizzas')

This version is fine with the test data above. If I say there are 30 students, the program will tell
me I need 20 pizzas. However, there are problems with some numbers of pizzas:

How many students: 40

You will need 26.666666666666668 pizzas

I can’t ask the pizza place for a fraction of the pizza, so I need a way of converting the number
of pizzas to an integer. At this point, I also must decide what the conversion will do. If I just
use the int conversion on the result above, this will result in an order for 26 pizzas because
the int function truncates the floating-point value. This effectively means that I’ll have pizza
for only 39 people rather than 40, leaving one hungry student.

Get the number of students
as a string

 Convert the text into a float

Calculate the number of
pizzas required

Print the result

MAKE SOMETHING HAPPEN

99Working with numbers

This would result in the creation of an integer variable called i that contains the
value 2. You might ask why the value if i is not set to 3, because it seems reasonable to
“round” a value to the nearest integer. However, in this respect Python is not reason-
able. Floating-point values are always truncated. In other words, the fractional part is
always discarded.

There are several ways to address this problem. I might think the best way to attack the prob-
lem is to add one extra pizza to the order to take care of any “spares.”

pizza_count = (students_int/1.5)+1

Load the example program and modify it using the above statement so that when you tell it
there are 40 students, the program suggests that you buy 27 pizzas.

Then change the program to make it less generous and always rounds down to the nearest
integer number of pizzas to order.

Converting between Fahrenheit and centigrade
To convert a temperature from Fahrenheit to centigrade, you subtract 32 from the Fahrenheit
value and then divide the result by 1.8. You could write a Python program to perform this
calculation. If you look at the pizza order program above, you’ll discover that you already
have most of the program written. You just need to change the messages that the program
displays and the statements that perform the calculation.

You can now write any kind of conversion program you like, converting feet to meters, grams
to ounces, or liters to gallons.

MAKE SOMETHING HAPPEN

100 Chapter 4 Working with variables

PROGRAMMER’S POINT

Never assume that you know what a program is supposed to do
If you wrote the pizza calculator for a customer, you should not decide for yourself what
the program should do if it must order a fraction of a pizza. Your customer might be happy
to “round down” the number of pizzas to keep their costs down. If this is the case, they will
complain when your program adds an extra pizza.

As a programmer, never assume that you know what the program should do. You must
always ask the customer. Otherwise, you might find yourself paying for over-ordered pizzas.

101Weather snaps

Weather snaps
Converting from Fahrenheit to centigrade is even more useful if you actually have
some weather data to work from. The snaps function named get_weather_temp
returns the temperature of a location in the United States. The information is provided
by the US National Weather Service, www.weather.gov. You must supply the method
with the latitude and longitude of the location for which you want the temperature.
Here’s an example that gets the temperature for Seattle, Washington.

EG4-05 Seattle Temperature

import snaps

temp = snaps.get_weather_temp(latitude=47.61, longitude=-122.33)

print('The temperature in Seattle is:', temp)

The latitude and longitude items in the call to the function are given as named argu-
ments. You first saw examples of these in Chapter 3 when we gave named arguments
to control the behavior of the snaps display_message function. Here we are giving
two arguments that describe a location.

You can find the latitude of a town or city in the United States by using the Bing search
engine. Just search for “Placename Latitude”, where Placename is where you live, and
you’ll get the values you need to use.

If you want a brief description of the weather conditions at a location, you can use the
get_weather_desciption method, which returns a short string describing the condi-
tions at a given location.

EG4-06 Seattle Weather

import snaps

desc=snaps.get_weather_desciption(latitude=47.61, longitude=-122.33)

print('The conditions are:',desc)

Keep in mind that these methods provide weather information only for locations in
the United States. If you try to use latitude and longitude values for other countries or
regions, the methods will cause your program to fail.

Import the snaps library

Get the temperature

Print the temperature

http://www.weather.gov

102 Chapter 4 Working with variables

Weather display program
You can now create a program that displays the current weather conditions. If you use the
display_text function from Snaps, your program can display the temperature and the
current weather description.

MAKE SOMETHING HAPPEN

What you have learned
In this chapter, I’ve shown you how to create variables in Python programs. You’ve
learned that a variable is a named location in memory and that there are rules con-
cerning what a valid name can be. Essentially, a Python name must start with a letter
or underscore (_) character and contain letters, numbers, or an underscore after the
first character. You’ve seen how Python determines the type of variable to create from
the type of value being assigned. Assigning an integer value to a variable creates an
integer variable, and so on.

You’ve also discovered that there are two fundamental kinds of data in programs: text
and numbers. Python provides the string type to hold text, and a program can use
the input function to read a line of text from a user at the Python Shell and store that
text in a string variable (although you also noticed that this behavior differs between
the two major versions of Python). You’ve seen how Python provides the int function
to convert a string that holds a number into the value that string represents, and that
programs can use a combination of input and int to read numbers from program uses.

Considering numeric values, you’ve seen the fundamental difference between an
integer value with no fractional part (for example, 1) and a real-number value that
contains a fractional element (for example, 1.5). We also explored how a floating-point
value stored in the computer can approximate the actual value, which might lead to
problems when performing calculations on real numbers.

Finally, you looked at how calculations are performed in programs, how to convert
between floating-point values and integer values, and why a program might need
to do this.

To reinforce your understanding of the content, consider the following “profound
questions” about variables and values.

103What you have learned

What happens if I “overwrite” a variable of one type with a value of another type?

You might think that this would cause an error. For example, you might expect
Python to give you an error along the lines of “Last time you used this variable you
put a number in it, and now you’re putting a string in it.” However, this is not what
happens. Every time you make an assignment, Python creates a brand-new variable
with the appropriate type and discards any existing variable with the same name. So,
a program never “overwrites” a variable; it simply makes a new one with the same
name and different contents.

Does using long variable names slow down a program?

You might think using a variable called “sales_total_for_July” would be more difficult
than using one called “sj.” And to an extent, you might be right. However, the effect on
a Python program’s speed is so small that it’s insignificant. I’d much rather use longer
variable names that make a program easy to understand.

Can we write all our programs using only floating-point variables?

You might think that using floating-point variables would make our programs simpler.
However, you can still make a compelling case for using integers where appropriate.
We’ve seen that the results of some calculations might not be what we would like
them to be. It is perfectly possible that a calculation that should produce the value 1
can produce values such as 1.00000000004. If a program compares the values 1 and
1.00000000004, it would decide that they are different and perhaps cause a program
to behave incorrectly.

For this reason, I try to make sure that when I create variables, I use values that
will create an appropriate type. When counting things, I’ll use integers; if I need to
perform calculations, I’ll use floating-point values.

Can I stop my program from crashing if someone types in an invalid number?

Yes. You haven’t yet learned how to do it, but there is a mechanism in Python that lets
a program take control when Python encounters an error. You can make a program
that displays an error message when a user makes a mistake and gives the user
another chance to enter the value. We’ll explore this in the section “Detect invalid
number entry using exceptions” in Chapter 6.

5
Making decisions

in programs

Boolean values
Question: What do you think would happen if you printed the contents of a Boolean value?

print(it_is_time_to_get_up)

CODE ANALYSIS

106 Chapter 5 Making decisions in programs

Boolean data
In Chapter 4, you learned that programs use variables to represent different types of
data. I like to think that you will forever associate the number of hairs on your head
with whole numbers (integers) and the average length of your hair with real numbers
(floating-point values). Now it’s time to meet another data type: the Boolean values.
Unlike the numeric data types, which provide a range of values, the Boolean type
has only two possible values: True or False. Perhaps you could use a Boolean value
to represent whether a given person has any hair.

Create Boolean variables
A program can create variables that can hold Boolean values. As with other Python
data types, the Python engine will deduce the type of a variable from the context in
which it is used.

it_is_time_to_get_up = True

The above statement creates a Boolean variable called it_is_time_to_get_up and sets
its value to True. In my world, it seems that it is always time to get up. In the highly
unlikely event of me ever being allowed to stay in bed, we can change the assignment
to set the value to False:

it_is_time_to_get_up = False

The words True and False are “built in” to Python, so that when Python sees these val-
ues, it thinks in terms of Boolean values. Note that you must capitalize the first letters
in True and False; the words “true” and “false” don’t work.

Answer: When you print any value, Python will try to convert that value into something
sensible for us to look at. In the case of Boolean values, it will print “True” or “False”.

True

Question: What do you think will happen if I give the word True to the input function?

>>> x=input("True or False: ")

True or False: True

This statement asks me to type in True or False. I’ve obligingly typed in the word True and the
result has been assigned to the variable x. Given that we know the word “True” is regarded as
special when written inside a program, what will be the type of the variable x?

Answer: The type of the variable x will be a string. Words Python regards as special only
have meaning in the program text, not when they are entered into a running program.

The value of x will be displayed as a string enclosed in quotes, just like any other string we
might store in a program.

>>> x

'True'

In Python 3.6 the input function takes text from the user and stores it as a string.
However, in Python 2 anything given to an input function is evaluated as a Python
expression. The value of the Python expression “True” is, not surprisingly, the Boolean
value “True.” So, if we ran the above statement in Python 2, the type of x really would
be a Boolean variable if you typed in True or False. See the discussion, “What could go
wrong? - Python versions and the input function” in Chapter 4 for more details of this
scary state of affairs.

Question: Is there a Python function called bool that will convert things into Boolean, just
like there are int and float functions?

107Boolean data

Answer: Indeed there is. We can investigate the way it works using the Python
Command Shell part of IDLE.

>>> bool(1)

True

>>> bool(0)

False

>>> bool(0.0)

False

>>> bool(0.1)

True

>>> bool('')

False

>>> bool('hello')

True

I used the Python Shell to evaluate some expressions involving the bool function. You can
see that the value zero is regarded as False, as is an empty string. Anything else is True.

Question: What happens if a program combines Boolean values with other values?

Answer: We know if a Python program tries to combine things in an improper way
(for example, adding a number to a string), an error is produced.

>>> 'Hello'+True

Traceback (most recent call last):

 File "<pyshell#26>", line 1, in <module>

 'Hello'+True

TypeError: must be str, not bool

If we try to add a Boolean value to a string, we get an error. Python returns an error
message. However, things get more complicated when we combine Boolean values with
other types of values:

>>> 1+True

2

The above statement adds the value True to the value 1. And it works, producing the
result 2. Python is quite happy to use Boolean values in arithmetic. The Boolean value
True is mapped to the value 1; the Boolean value False is mapped to 0.

>>> 1+False

1

108 Chapter 5 Making decisions in programs

109Boolean data

Boolean expressions
A Boolean variable can be assigned to any expression that returns a value that is either
True or False. As an example, let’s see if we can create a Python program that will
serve as an alarm clock.

The first thing we’ll need is a way for the program to acquire time information. It turns
out that the sensibly named time library provides a function that will fetch the time.

import time

current_time = time.localtime()

hour = current_time.tm_hour

The code above will fetch the hour component of the time and store it in a variable
called hour. Note that the first statement imports the time library that contains the
localtime function.

The localtime function returns a Python object that contains attributes that repre-
sent the current time, including the hour. The variable current_time is set to the time
returned by localtime. One of the attributes of the current_time object is the hour
value, which is what we want to use.

An attribute is what Python calls a piece of data that is part of an object. In the same way
that several great programming books can be attributed to the author “Rob Miles,” the
tm_hour value can be attributed to an object produced by the localtime function.

ATTRIBUTE VALUE

tm_year Year (for example, 2017)

tm_mon Month in the range 1 to 12 with 1 being January

tm_mday Day in the month in the range 1 to month length

tm_hour Hour in the day in the range 0 to 23

tm_min Minute in the hour in the range 0 to 59

tm_sec Second in the minute in the range 0 to 59

tm_wday Day of the week in the range 0 to 6 with Monday as 0

tm_yday Day in the year in the range 0-364 or 0-365 in a leap year

 Import the time library

 Get the current time

 Split off the hour value

Make a one-handed clock
Let’s start up the IDLE program and use the localtime() function to make a clock that
displays only the hour value. These are called “one-handed clocks” and are supposed to pro-
mote a more relaxed attitude to life. Open IDLE and click New File on the File menu to create
a new program file. Enter the following program:

MAKE SOMETHING HAPPEN

110 Chapter 5 Making decisions in programs

This table shows some of the most useful attributes of the object returned by the
localtime function. We can use these to create Python programs that are aware of
the current date and time.

If all this is hurting your head, you can think of the time value as a piece of paper that
has a table containing time data printed on it. Figure 5-1 shows what the table might
look like.

ATTRIBUTE VALUE

tm_year 2017

tm_mon 7

tm_mday 19

tm_hour 11

tm_min 40

tm_sec 30

tm_wday 2

tm_yday 200

Figure 5-1 A time value table

The Attribute column on the left contains the name of each attribute. The Value
column on the right contains the value of each attribute. The localtime() function
returns this piece of paper, and then the program can look at values against each
attribute in the table to get the current time information. We’ll learn a lot more about
objects later in the book.

EG5-01 One handed clock Version 1.0

import time

current_time = time.localtime()

hour = current_time.tm_hour

print('The hour is', hour)

Run the program and save it in a file called “OneHandedClock.” It should print out the hour
the program was run.

You could modify this to produce a more fully featured clock that gives the time (and perhaps
even the date) when it runs. Use Save As on the File menu to save the improved clock in a
different file.

 Import the time library

 Get the current time

 Split off the hour value

 Print the hour value

Comparing values
We’ve said that Python expressions are made up of operators (which identify the
operation) and operands (which identify the items being processed). Figure 5-2
shows our first expression, which worked out the calculation, 2+2.

2
operand

(thing to work on)

+
operator

(thing to do)

2
operand

(thing to work on)

Figure 5-2 An arithmetic operator

An expression can contain a comparison operator (Figure 5-3):

hour
operand

(thing to work on)

>
operator

(thing to do)

6
operand

(thing to work on)

Figure 5-3 A comparison operator

111Boolean data

Examining comparison operators
Question: How does the equality operator work?

Answer: The equality operator evaluates to True if the two operands hold the same value.

>>> 1==1

True

CODE ANALYSIS

112 Chapter 5 Making decisions in programs

An expression containing a comparison operator returns a Boolean value, which is
a value that is either True or False. The > operator in this expression means “greater
than.” If you read the expression aloud, you say “hour greater than six.” In other words,
this expression is True if the hour value is greater than 6. I need to get up after 7
o’clock, so this is what I need for my alarm clock.

Comparison operators
These are the comparison operators that you can use in Python programs:

OPERATOR NAME EFFECT

> Greater than True if the value on the left is greater than the value on the right

< Less than True if the value on the left is less than the value on the right

>= Greater than or equals True if the value on the left is greater than or equal to the value on the right

<= Less than or equals True if the value on the left is less than or equal to the value on the right

== Equals True if the value on the left is equal to the value on the right

!= Not equals True if the value on the left is not equal to the value on the right

A program can use comparison operators in an expression to set a Boolean value.

it_is_time_to_get_up = hour>6

This Python statement will set the variable it_is_time_to_get_up to the value True if
the value in hours is greater than 6 and False if the value in hours is not greater than
6. If this seems hard to understand, try reading the statement and listen to how it
sounds. “it_is_time_to_get_up equals hour greater than six” is a good explanation
of the action of this statement.

The equality operator can be used to compare strings and Boolean values too.

>>> 'Rob'=='Rob'

True

>>> True==True

True

Question: How do I remember which relational operator is which?

Answer: When I was learning to program, I associated the < in the <= operator with the
letter L, which reminded me that <= means “less than or equal to.”

Question: Can we apply relational operators between other types of expressions?

Answer: Yes, we can. If a relational operator is applied between two string operands,
it uses an alphabetic comparison to determine the order. You can test this by using the
Python Shell:

>>> 'Alice'<'Brian'

True

The Python Shell returned True because the name Alice appears alphabetically before Brian.

Equality and floating-point values
In Chapter 4, we saw that a floating-point number is sometimes only an approximation of the
real number value our program is using. In other words, some numbers are not stored precisely.

This approximation of real number values can lead to serious problems when we write pro-
grams that test to see whether two variables hold the same floating-point values. Consider
the following Python statements, which I’ve typed into the Python Shell:

>>> x = 0.3

>>> y = 0.1+0.2

These statements create two variables, x and y, which are both set to the value 0.3.

The variable x has the value 0.3 directly assigned, whereas the second variable, y, gets the
value 0.3 as the result of a calculation that works out the result of 0.1 + 0.2.

WHAT COULD GO WRONG

113Boolean data

What do you think we will see if we test the two variables for equality?

>>> x == y

False

This expression uses the equality operator (==) which will produce a result of True if its two
operands hold the same value. However, Python decides that x and y are different because
the variable x holds the value 0.3 and the variable y holds the value 0.30000000000000004.
This illustrates a problem with program code that compares floating-point values to deter-
mine whether they are equal. The tiny floating-point errors mean values we think are the
same do not always evaluate that way.

If a program needs to compare two floating-point values for equality, the best approach is
to decide they are equal if they differ by only a very small amount. If you don’t do this, you
might find that your programs don’t behave as you might expect.

The date and time values returned from the Python time functions are supplied as integers
so you can test these for equality without problems. However, when you use functions from
other libraries, you might want to check what type of result is returned. You can use the
Python built-in function type to ask an object its data type.

>>> mystery = 1

>>> type(mystery)

<class 'int'>

The type function returns an object that represents the type of the item supplied as a
parameter. In the above Python Shell example, you can see that the mystery variable is int
(which is not very surprising because it was created from an int). You might want to experi-
ment with other variables to see their data types.

Boolean operations
At the moment, my test to determine whether it is time to get up is controlled only by
the hour value of the time.

it_is_time_to_get_up = hour>6

The above statement sets the value of it_is_time_to_get_up to True if the hour is
greater than 6 (that is, from seven o’clock onward), but we might want to get up at

114 Chapter 5 Making decisions in programs

Boolean operators
We can investigate the behavior of Boolean operators by using the Python Shell part of IDLE.
We can just type in expressions and see how they evaluate.

Question: What does the following expression evaluate to?

>>> not True

Answer: The effect of not is to invert a Boolean value, turning the True into a False.

>>> not True

False

Question: How about this expression?

>>> True and True

Answer: The operands each side of the and are True, so the result evaluates to True.

>>> True and True

True

CODE ANALYSIS

115Boolean data

seven thirty. To be able to do this, we need a way of testing for a time when the hour is
greater than 6 and the minute is greater than 29. Python provides three logical opera-
tors we can use to work with logical values. Perhaps they can help solve this problem.

OPERATOR EFFECT

not
Evaluates to True if the operand it is working on is False

Evaluates to False if the operand it is working on is True

and Evaluates to True if the left-hand value and the right-hand value are True

or Evaluates to True if the left-hand value or the right-hand value is True

The and operator is applied between two Booleans value and returns True if both values
are True. An or operator applied between two Boolean values returns True if at least
one of the values is True. The third operator, not, can be used to invert a Boolean value.

Question: What about the following expression?

>>> True and False

Answer: Because both sides (operands) of the and operator need to be True for the
result to be True, you shouldn’t be surprised to see a result of False.

>>> True and False

False

Question: What about the following expression?

>>> True or False

Answer: Because only one side of an or operator needs to be True for the result to be
True, the expression evaluates to True.

>>> True or False

True

Question: So far, the examples have used only Boolean values. What happens when we start
to combine Boolean and numeric values?

>>> True and 1

Answer: Python is quite happy to use and combine logical and numeric values. The
above combination would not return True, however. Instead, it will return 1.

>>> True and 1

1

This looks a bit confusing, but it gives us an insight into how Python evaluates our logical
expression. Python will start at the beginning of a logical expression and then work along
the expression until it finds the first value it can use to determine the result of the expres-
sion. It will then return that value.

In the above expression, when Python sees that the left-hand operand is True, it says to
itself “Aha. The value of the and expression is now determined by the right-hand value. If
the right-hand value is True, the result is True. If the right-hand value is False, the result
is False.” So, the expression simply returns the right-hand operand. We can test this
behavior by reversing the order of the operands:

116 Chapter 5 Making decisions in programs

>>> 1 and True

True

We know that any value other than 0 is True, so Python will return the right-hand
operand, which in this case is True. We can see this behavior with the or operation, too.
Python only looks at the operands of a logical operator until it can determine whether
the result is True or False.

>>> 1 or False

1

>>> 0 or True

True

You might wish to experiment with other values to confirm that you understand what
is happening.

We could try to make an alarm that triggers after 7:30 by writing the following statement:

it_is_time_to_get_up = hour>6 and minute>29

The and operator is applied between two Boolean values and returns True if
both expressions evaluate to true. The above statement would set the variable
it_is_time_to_get_up to True if the value in hour is greater than 6 and the value
in minute is greater than 29, which you might think is what we want. However, this
statement is incorrect. We can discover the bug by designing some tests:

HOUR MINUTE REQUIRED RESULT OBSERVED RESULT

6 0 False False

7 29 False False

7 30 True True

8 0 True False

The table shows four times, along with the required result (what should happen) and
the observed result (what does happen). One of the times has been observed to work
incorrectly. When the time is 8:00, the value of it_is_time_to_get_up is set to False,
which is wrong.

117Boolean data

118 Chapter 5 Making decisions in programs

The condition we’re using evaluates to True if the hour value is greater than 6 and the
minute value is greater than 29. This means that the condition evaluates to False for
any minute value less than 29, meaning it is False at 8:00.

To fix the problem, we need to develop a slightly more complex test:

it_is_time_to_get_up = (hour>7) or (hour==7 and minute>29)

I’ve added parentheses to show how the two tests are combined by the or operator.
If the value of hour is greater than 7 we don’t care what the value of minute is. If the
hour is equal to 7, we need to test that the minute is greater than 29. If you try the
values in the table with the above statement, you’ll find that it works correctly.

This illustrates an important point when designing code intended to perform logic like
this. You need to design tests that you can use to ensure that the program will do what
you want.

The if construction
Suppose I want to make a program that will display a message telling me if it’s time to
get out of bed. We can use the Boolean value we just created to control the execution
of programs by using Python’s if construction.

EG5-02 Simple Alarm Clock

import time

current_time = time.localtime()

hour = current_time.tm_hour

minute = current_time.tm_min

it_is_time_to_get_up = (hour>7) or (hour==7 and minute>29)

if it_is_time_to_get_up:

 print('IT IS TIME TO GET UP')

 Import the time library

 Get the time value

 Get the hour value

 Set the flag value

 Is the flag value true?
 If so, print the message

119The if construction

The if construction starts with a statement that begins with the word if. This is followed
by a Boolean value called the condition. The condition is followed by a colon (:). The colon
is very important. It marks the start of the statements controlled by the if condition.

The indented statements (as is the print statement above) are performed only if the
Boolean value is True. In other words, looking at the code above, the statement that
prints ‘IT IS TIME TO GET UP’ is obeyed only if it_is_time_to_get_up is True.

Conditions in Python
The condition determines whether the statements controlled by the condition are
obeyed. If the condition is True, the statements controlled by the if construction
are obeyed. If the condition is False, the Python program will skip the statements
controlled by the if construction. The condition in the test above is easy to
understand because the value is True or False.

if it_is_time_to_get_up:

 print('IT IS TIME TO GET UP')

We can simplify the program using the result of a logical expression as the condition:

if (hour>7) or (hour==7 and minute>29):

 print('IT IS TIME TO GET UP')

The behavior of the statement is the same, but there’s no need for the intermediate
Boolean value.

Combine Python statements into a “suite”
Printing a message on the screen is all very well, but printed output alone won’t get
me out of bed. I seem to need a large message and a loud noise to get me going in
the morning. Fortunately, we can use the snaps functions to display messages and
play sounds. We first saw the snaps functions at the end of Chapter 3. We can use
these prewritten functions to create graphical displays and play sounds. I’ve created a
suitably noisy siren sound sample we can use to make an alarm clock that would wake
even the deepest sleeper.

When the alarm goes off, I want the program to display a large message, play the siren
sound, and then wait while the sound playback is completed. In other words, I want
the program to perform three statements.

120 Chapter 5 Making decisions in programs

EG5-03 Siren Alarm Clock

import time

import snaps

current_time = time.localtime()

hour = current_time.tm_hour

minute = current_time.tm_min

if (hour>7) or (hour==7 and minute>29):

 snaps.display_message('TIME TO GET UP')

 snaps.play_sound('siren.wav')

 # pause the program to give the sound time to play

 time.sleep(10)

An if condition can control any number of statements indented underneath it. The program above
displays a message, plays the siren sound, and then sleeps for 10 seconds while the sound is played.

Once I’ve completed writing the statements to be performed when it’s time to get up, I can continue
writing statements that will always be performed. I indicate this by writing the code without an indent
in the left-hand margin.

EG5-04 Alarm clock with time display

import time

current_time = time.localtime()

hour = current_time.tm_hour

minute = current_time.tm_min

if (hour>7) or (hour==7 and minute>29):

 print('IT IS TIME TO GET UP')

 print('RISE AND SHINE')

 print('THE EARLY BIRD GETS THE WORM')

print('The time is', hour,':',minute)

The preceding program prints three inspiring messages when it is time to get up. The last
statement, which prints out the time, is always obeyed, whether or not it’s time to get up.
Many programming languages (C++, Java, JavaScript, and C#) use specific characters to

Import the time library

Import the snaps library

Get the time

Get the hour

All these statements are
controlled by the condition

This statement is always performed

Indented text can cause huge problems
Using indenting to show how various parts of a program are related is a good idea but can
result in problems when you try to run your program. The first problem is that if you get the
indenting even slightly wrong, your program will not run:

WHAT COULD GO WRONG

121The if construction

mark the start and end of a block of statements controlled by an if condition. Python
doesn’t work that way. A statement in the left margin will be obeyed if the program ever
reaches it. Indented statements are controlled by the conditions above them. The good
news about this approach is that it forces you to arrange your program so that it is quite
easy to understand which statements are controlled by which conditions.

Above, you can see what happens when I try to run a program when one of the statements is
misaligned. It is easy to see the mistake. The IDLE editor will highlight the faulty indent char-
acter. Now look at the following program and figure out what’s wrong with it.

if (hour>7) or (hour==7 and minute>29):

 print('IT IS TIME TO GET UP')

 print('RISE AND SHINE')

 print('THE EARLY BIRD GETS THE WORM')

print('The time is',hour,':',minute)

The answer is that the code looks fine. However, it turns out that the third line of this program
was indented using the tab key (which moves the cursor along the line), and the others were
indented by adding spaces. When printed on paper or viewed on a screen, these statements
look identical, but Python can detect the differences and will refuse to run the program.

We’ve already seen that the IDLE editor does a good job of warning about indenting errors, but
if you’re given programs that have been edited by other programs you might find tab char-
acters in some of the lines that cause errors. If Python is producing errors on a line that looks
completely correct, check to see whether it was indented using spaces or the tab character.

122 Chapter 5 Making decisions in programs

The formal definition of the Python if construction looks a bit like this:

condition
(value that is
True or False)

:
colon

if
(start of the if
construction)

suite
statements

Figure 5-4 if condition

The item(s) following the colon in an if condition is called a suite. In my living room, I
have a “three-piece suite” consisting of two chairs and a sofa. In Python, a suite can be
one of two things:

 ● A set of indented statements as you have seen above, with nothing after the colon
on the line with the if statement

 ● A set of statements on the same line as the if statement after the colon, with each
statement separated from the next by a semicolon

Conditional statement layout
Question: Can we work with conditional statements using the Python Shell?

Answer: Yes, you can. Open the Python Shell and type the following:

>>> if True:

When you press Enter at the end of this line, you will notice something interesting about
the cursor. It doesn’t go back to the left-hand margin. Instead, the cursor is indented. Add
a print statement at this position and press Enter:

>>> if True:

 print('True')

CODE ANALYSIS

123The if construction

If the second meaning of the word suite is confusing, consider this statement:

if hour > 6:print('IT IS TIME TO GET UP');print('THE EARLY BIRD GETS THE WORM')

In this example, both print statements would be obeyed if the value of hour is
greater than 6. You can use this statement format when you only need to perform a
few statements when a condition is True. Note that you can’t combine these two types
of suites:

if hour > 6:print('IT IS TIME TO GET UP'); print('RISE AND SHINE')

 print('THE EARLY BIRD GETS THE WORM')

SyntaxError: unexpected indent

This arrangement of statements would not work. The Python suite is either on the line
following the colon or on lines under the if statement.

Personally, I never use the format in which Python code is placed after the colon on
the same line as the if condition. I find that the indented layout does a very good job
of showing me when particular statements are executed.

When you add the print statement, you’ll notice two things. First, the print statement
doesn’t print anything. Secondly, you’ll see that the cursor remains indented. So, add a
second print statement:

>>> if True:

 print('True')

 print('Still true')

The second statement has no effect, and the cursor is indented. Nothing happens
because Python is waiting for the end of the suite of statements controlled by the if
statement. You can end the suite by entering an empty line:

>>> if True:

 print('True')

 print('Still true')

True

Still true

When you type in an empty line (that is, press the Enter key without entering any text),
the suite is completed, and Python performs the condition. Note that it is not very
sensible to type conditions into the Python Shell, but you will notice the same automatic
indenting when you enter this program text into the IDLE text editor.

Question: How many spaces must you indent lines of a suite of Python statements controlled
by an if condition?

Answer: The IDLE editor is configured to use four spaces for indenting, but you can
change this in the options for the program. There is no “approved” amount of indenta-
tion that Python programs should have, but you must be consistent in the number of
spaces you use. In other words, if the first line of the suite is indented four spaces, all the
other lines must be indented four spaces. You can get into real trouble if you start to use
the TAB character to indent your Python statements, because this might lead to a situa-
tion in which lines of your program appear to have the same indenting, but some of them
contain tabs instead of spaces.

124 Chapter 5 Making decisions in programs

125The if construction

Add an else part to an if construction
Many programs want to perform one action if a condition is True and another action
if the condition is False. You can add an else to the if construction that identifies a
statement to be performed if the condition is False.

EG5-05 Simple Alarm Clock with else

if (hour>7) or (hour==7 and minute>29):

 print('IT IS TIME TO GET UP')

else:

 print('Go back to bed')

This program displays a different message depending on the time of day that the user runs
the program. Before 7:30 a.m., it displays, “Go back to bed”. After 7:30 a.m., the program
displays, “IT IS TIME TO GET UP”. The else is followed by another “suite” of statements.

Start of the if construction

Start of the else statements

If constructions
Question: Must an if construction have an else part?

Answer: No. They are very useful sometimes, but their usefulness depends on the prob-
lem the program is trying to solve.

Question: What happens if a condition is never True?

Answer: If a condition is never True, the statement controlled by the condition never
gets to run.

CODE ANALYSIS

Compare strings in programs
A program can use the equality operators to compare two strings. We can use this to
make a program that will recognize us by our name:

EG5-06 Broken Greeter

name = input('Enter your name: ')

if name == 'Rob':

 print('Hello, Oh great one')

Read in the name

 Compare the text entered with ‘Rob’

Methods and functions
Question: How do the lower() and upper() methods work?

Answer: Everything in Python is an object that can provide a set of methods. Methods
are called in the same way as functions such as input and print. Later in the book, we’ll
discover how we can design our objects and give them methods.

Question: Why do we have to put the parentheses on the end of lower()?

Answer: An effective way to explain this is to leave the parentheses off, and see
what happens:

>>> name = 'Rob'

>>> name.upper

<built-in method upper of str object at 0x0000021CDA0FE880>

CODE ANALYSIS

126 Chapter 5 Making decisions in programs

If you tried to show off by using this program, you might have a problem, depend-
ing on how you type your name. The equality test regards uppercase and lowercase
characters as different. In other words, if you enter the string “ROB,” you will not see
the flattering greeting.

As a way around this, you can ask any string to provide the uppercase version of itself.
A string value provides an upper() method that returns a version of a string in which
the lowercase letters are replaced by uppercase characters. You can think of a method
as a function that an object can be made to perform for you.

EG5-07 Uppercase Greeter

name = input('Enter your name: ')

if name.upper() == 'ROB':

 print('Hello, Oh great one')

This version of the program will work whether the user enters “rob,” “Rob,” or “ROB.”
Whenever you write a program that accepts string input, you must decide how the
program should behave if the user enters case-sensitive text.

There is also a string method called lower() that we can use to convert uppercase
letters in a string to lowercase.

 Convert the name to uppercase before testing

Leaving out the parentheses doesn’t cause a program to fail. But instead of the method
running, we get a description of the upper attribute of the name object.

We’ve seen attributes before when we extracted the hour value out of current date and
time by using t_hour.

Some attributes can be called as a method. Python knows that a method is being called
because method calls have arguments. Arguments are values enclosed in parentheses
after the method name.

When we call the print function, we give it arguments that tell the function what to
print. We can call the print function with an empty set of arguments to print a blank
line. In the case of the upper() method, there’s no need to pass any arguments to the call,
but we do need to add the parentheses so that Python knows to call a method.

>>> name = 'Rob'

>>> name.upper()

ROB

Question: What’s the difference between a function and a method?

Answer: Programs use methods and functions in the same way. The only difference is
where they are created. Functions are behaviors not associated with any particular object.
You can think of them as “always there.” They don’t need an object to exist. Functions
you’ve used already include print and input.

Methods are behaviors that are attributes of objects. The upper() method allows a
string to do something for us, so it is packaged as part of the string object.

Nesting if conditions
Python lets a program put one condition inside another. Perhaps we might want to
add a password test to make sure an important person really is who they say they are.

EG5-08 Greeter with password

name = input('Enter your name: ')

if name.upper() == 'ROB':

 password = input('Enter the password: ')

 if password == 'secret':

 print('Hello, Oh great one')

 else:

 print('Begone. Imposter')

 Obeyed if the name is Rob

 Obeyed if the name is Rob
and the password is correct

127The if construction

Make an advanced alarm clock
There are lots of ways we can improve the alarm clock. The information returned by the
localtime function includes the date and the day of the week. You could make an alarm
clock that tests the day of the week value and allows you to sleep in on weekends. You could
use the sound playback feature of snaps to make an alarm clock that plays a suitable fanfare
on the morning of your birthday.

MAKE SOMETHING HAPPEN

128 Chapter 5 Making decisions in programs

This version of the greeter program asks for a password if the name Rob is entered. The
second if condition (the one that tests the password) is nested inside the first one. You
can tell that the else element applies to the second if condition by the way it is indented.

The following code has the same arrangement of if and else elements, but this time
else is paired with the outer condition, which means that the suite it controls runs if
the name entered is not ‘Rob’.

EG5-11 Greeter with outer else

name = input('Enter your name: ')

if name.upper() == 'ROB':

 password = input('Enter the password: ')

 if password == 'secret':

 print('Hello, Oh great one')

else:

 print('You are not Rob. Shame.')

Working with logic
Writing code that makes logical decisions like this is one of the hardest parts of learn-
ing to program. If you think it’s like solving a logic puzzle, you’re right, because that
is just what you are doing. The best advice I can give is that you write down what you
want to do in English and then work on converting the text into logical expressions.
For example, “I want to pay overtime when the hours worked are more than 40 or
the day is a Saturday.” Even after many years of programming, I still must sometimes
resort to writing things out. Once I’ve written some code that I think will work, I then
test it by trying some values and observing the outcomes. Creating a test plan, as we
did earlier for the alarm clock, is also a good idea.

 Obeyed if the name is Rob

 Obeyed if the name is Rob
and the password is correct

129Use decisions to make an application

Use decisions to make
an application
Now that you know how to make decisions in your programs, you can start to make
more useful software. Let’s say your next-door neighbor is the owner of a theme park
and has a job for you. Some rides at the theme park are restricted to people by age,
and he wants to install some computers around his theme park so that people can
find out which rides they may go on. He needs some software for the computers, and
he’s offering a season pass to the park if you can come up with the goods, which is a
very tempting proposition. He provides you with the following information about the
rides at his park:

RIDE NAME MININUM AGE REQUIREMENT

Scenic River Cruise None

Carnival Carousel At least 3 years old

Jungle Adventure Water Splash At least 6 years old

Downhill Mountain Run At least 12 years old

The Regurgitator (a super scary roller coaster) Must be at least 12 years old and less than 70

You discuss with him the design of the program. Users will select the ride they want
to go on. The program will ask for their ages and then display a message indicating
whether they can go on this ride. For now, your customer is happy with text input, but
later he would like to move to a graphical user interface with touch buttons. (We’ll
learn how to create graphical user interfaces in Part 3 of the book.)

Design the user interface
You and your customer discuss how the program should be used and come up with
the following text-based user interface:

Welcome to our Theme Park

These are the available rides:

1. Scenic River Cruise

2. Carnival Carousel

130 Chapter 5 Making decisions in programs

3. Jungle Adventure Water Splash

4. Downhill Mountain Run

5. The Regurgitator

Please enter the ride number you want: 1

You have selected the Scenic River Cruise

There are no age limits for this ride

Here, the user has selected the Scenic River Cruise and has been told there are no age
limits for this ride.

PROGRAMMER’S POINT

Design the user interface with the customer
You might think that an interface like this would be simple to design and that the customer
will have no strong opinions on how the user interface looks and functions. I’ve found
this to be wrong. I’ve had the awful experience of proudly showing my finished solution
to a customer only to be told that it was “Not what they wanted” and “Hard to use.” I now
understand that this was my fault. Rather than showing only my finished design, I should
have created the design with the customer. That would have saved me a lot of work.

Implement a user interface
Now that we have our design, we can create the Python code to implement it. This is
the code that I came up with:

EG5-10 Ride Selector Start

print('''Welcome to our Theme Park

These are the available rides:

1. Scenic River Cruise

2. Carnival Carousel

3. Jungle Adventure Water Splash

4. Downhill Mountain Run

131Use decisions to make an application

5. The Regurgitator

''')

ride_number_text = input('Please enter the ride number you want: ')

ride_number = int(ride_number_text)

if ride_number == 1:

 print('You have selected the Scenic River Cruise')

 print('There are no age limits for this ride')

This code handles the case when a user selects the Scenic River Cruise ride. With the
information you received from the theme park’s owner, you know that if the user
selects any ride other than the Scenic River Cruise, the program must obtain the age
of the user. You can add an else statement to the code to meet this need. Remember
that the if construction will perform the else part if the ride selection is anything
other than Scenic River Cruise, which is what we want. Here, I’ve put a comment in the
code at the point where the program needs to read the age value.

if ride_number == 1:

 print('You have selected the Scenic River Cruise')

 print('There are no age limits for this ride')

else:

 # We need to get the age of the user

The selection of the Scenic River Cruise is easy to handle because anyone can go on
this ride. For the other rides, the program must obtain the age of the person who
wants to ride. The program can just use the same sequence as was used to read the
ride number.

if ride_number == 1:

 print('You have selected the Scenic River Cruise')

 print('There are no age limits for this ride')

else:

 # We need to get the age of the user

 age_text = input('Please enter your age: ')

 age = int(age_text)

132 Chapter 5 Making decisions in programs

Testing user input
Once our funfair program knows the age of the user, it can decide whether the user
can go on the ride. The program has two items of data with which to work:

 ● The selected ride, held in a variable named ride_number.

 ● The age of the user, held in an integer variable named age.

The program can use a sequence of if…else constructions to make its decision:

if ride_number == 2:

 print('You have selected the Carnival Carousel')

 if age >= 3 :

 print('You can go on the ride.')

 else:

 print('Sorry. You are too young.')

These conditions work for the Carnival Carousel. The first if statement is used to
determine the ride selected. The inner if statement makes the appropriate decision
based on the age of the user. Notice that I’ve added a comment to make it clear for
which ride this code is used.

Now that you have code that works for the Carnival Carousel, you can use it as the
basis for the code that handles some of the other rides. To make the program work
correctly for the Jungle Adventure Water Splash, you need to check for a different ride
name and confirm or reject the user based on a different age value. Remember that
for this ride, a visitor must be at least six years old. You could check whether the visitor
is older than five (age > 5), or use the greater-than-or-equal-to operator when you
test for the value of age.

if ride_number == 3:

 print('You have selected the Jungle Adventure Water Splash')

 if age >= 6:

 print('You can go on the ride.')

 else:

 print('Sorry. You are too young.')

You can implement the Downhill Mountain Run very easily by using the same pattern as
for the previous two rides. But the final ride, The Regurgitator, is the most difficult. The
ride is so extreme that the owner of the theme park is concerned for the health of older

133Use decisions to make an application

people who use it and has added a maximum age restriction as well as a minimum age.
The program must test for users who are older than 70 as well as those who are younger
than 12. We must design a sequence of conditions to deal with this situation.

Complete the program
The code that deals with The Regurgitator is the most complex piece of the program
that we’ve had to write so far. To make sense of how it needs to work, you need to
know more about the way that if constructions are used in programs. Consider the
following code:

if ride_number == 5:

 print('You have selected The Regurgitator')

The print statement tells the user what is going on, and also makes it clear that all the
statements we add inside this suite will run only if the selected ride is The Regurgita-
tor. In other words, there is no need for any statement in that suite to ask the question,
“Is the selected ride The Regurgitator?” because the statements are run only if this is
the case. The decisions leading up to a statement in a program determine the context
in which that statement will run. I like to add comments to clarify the context:

if ride_number == 5:

 print('You have selected The Regurgitator ')

 if age >= 12:

 # Age is not too low

 if age > 70:

 # Age is too high

 print('Sorry. You are too old.')

 else:

 # Age is in the correct range

 print('You can go on the ride.')

 else:

 # Age is too low

 print('Sorry. You are too young.')

These comments make the program slightly longer, but they also make it a lot clearer.
This code is the complete construction that deals with The Regurgitator. The best way
to work out what it does is to work through each statement in turn with a value for the
user’s age. You can download and run the entire program from the sample “EG5-13
Complete Ride Selector.”

134 Chapter 5 Making decisions in programs

Input snaps
The snaps framework is a prebuilt set of functions that we can use in our programs.
We’ve already seen snaps functions used to display images, display text, play sounds,
and even get the current weather conditions. Now we’ll discover a new snaps function
that we can use to make a really good-looking ride selection program.

The get_string function works the same way as the Python input function. It takes a
string of text as a prompt, displays the prompt, and then allows the user to type in text.

EG5-12 Snaps get_string function

import snaps

name = snaps.get_string('Enter your name: ')

snaps.display_message('Hello ' + name)

The program above is a snaps version of the greeter program that we’ve already
written. Figure 5-5 shows the display produced.

Figure 5-5 Reading a string

135Input snaps

We can use optional arguments to control where the input prompt appears on
the screen.

EG5-13 Theme Park Snaps Display

import snaps

snaps.display_image('themepark.png')

prompt = '''These are the rides that are available

1: Scenic River Cruise

2: Carnival Carousel

3: Jungle Adventure Water Splash

4: Downhill Mountain Run

5: The Regurgitator

Select your ride: '''

ride_number_text = snaps.get_string(prompt,vert='bottom',

 max_line_length=3)

confirm='Ride ' + ride_number_text

snaps.display_message(confirm)

The program displays a background image and then uses the get_string function
to request the ride number from the user. Figure 5-6 shows the effect of the
vert argument when it is used to display the input at the bottom of the screen.
The max_line_length argument is used to set the maximum length for the string
to be read. The above program restricts the string length to three characters.

Snaps ride selector
You can use the EG5-13 Theme Park Snaps Display sample program as the starting point
for a very good ride selector program. You could even design custom graphics for each ride
and display them when the ride is selected. You could even add suitable sound effects for
each ride.

Weather helper
At the end of the last chapter we discovered some snaps functions that let us write programs
that can determine the current weather conditions. You could use these in if constructions
to create a program that would remind us to wrap up warm or look out for ice.

MAKE SOMETHING HAPPEN

Figure 5-6 Snaps theme park ride selector

136 Chapter 5 Making decisions in programs

EG5-14 Weather helper

import snaps

temp = snaps.get_weather_temp(latitude=47.61, longitude=-122.33)

print('The temperature is:', temp)

if temp < 40:

 print('Wear a coat - it is cold out there')

elif temp > 70:

 print('Remember to wear sunscreen')

This is a very simple weather helper program that reminds me to wear a coat when it’s cold
and wear sunscreen when it’s hot. You can improve this by adding images and sounds for
different weather conditions.

Fortune teller
The randint function from the random library can be used in if constructions to make
programs that perform in a way that appears random.

import random

if random.randint(1,6)<4:

 print('You will meet a tall, dark stranger')

else:

 print('You will not meet anyone at all')

The if construction tests the value produced by a call to the randint method that will produce
a value in the range 1 to 6. If the returned value is less than 4, the program tells the user that he
or she will meet a tall, dark stranger. Otherwise, it tells the user he or she will not meet anyone
interesting. You could use a sequence of such conditions to make a fun fortune teller program.
You could also create some graphical images to go along with the program predictions.

137Input snaps

138 Chapter 5 Making decisions in programs

What you have learned
In this chapter, you’ve learned that Python can work with Boolean values as well as
numbers and text. Boolean values can be either True or False, and we can use compar-
ison (for example, less than) operators to test strings and numbers and generate Bool-
ean results. You’ve also discovered that the Python if construction lets you change a
program’s behavior depending on the data it is given. This works by executing one or
more Python statements (called a “suite”) only if a given Boolean value is True. This
allows a programmer to make software that can respond to input in a useful way.

We also learned that there are three additional logical operators, and, or and not. The
and operator evaluates to True if both of its operands are True, whereas the or opera-
tor evaluates to True only if both its operands are True.

We discovered how to create useful programs, which can work with logical conditions
to create code that makes decisions. The best way to do this is to transcribe an English
description of the decision into Python conditional statements. For example, “If it is
Saturday or Sunday and it is after 9:00 a.m., I must get out of bed” could be converted
into a single logical expression that makes that decision.

Here are some questions that you might like to ponder about making decisions
in programs:

Does the use of Boolean values mean that a program will always do the same
thing given the same data inputs?

It is very important that, given the same inputs, the computer does the same thing
each time. If the computer starts to behave inconsistently, this makes it much less
useful. When we want random behavior from a computer (for example, when writing a
fortune teller program), we have to obtain values that are explicitly random and make
decisions based on those. Nobody wants a “moody” computer that changes its mind
(although, of course, it might be fun to try to program one using random numbers).

Will the computer always do the right thing when we write programs that
make decisions?

It would be great if we could guarantee that the computer will always do the right
thing. However, the computer is only ever as good as the program it is running. If
something happens that the program was not expecting, it might respond incorrectly.
For example, if a program was working out cooking time for a bowl of soup, and the
user entered ten servings rather than one, the program would set the cooking time to
be far too long (and probably burn down the kitchen in the process). In that situation,
you can blame the user (because they input the wrong data), but there should prob-
ably also be a test in the program that checks to see if the value entered is sensible.

139What you have learned

If the cooker can’t hold more than three servings, it would seem sensible to perform
a test that limits the input to three. When you write a program, you need to “second
guess” what the user might do and create decisions that make your program behave
sensibly in each situation.

Is there a limit to how many if conditions you can nest inside each other?

No. The Python compiler will be quite happy to let you put 100 if statements in a row
(although you would have a problem editing them in IDLE). If you find yourself doing
this, you might want to step back from the problem a bit and see if there is a better
way of attacking the problem.

6
Repeating actions

with loops

142 Chapter 6 Repeating actions with loops

The while construction
The while construction allows a program to repeat one or more statements while a
given condition is True. There’s no point in learning about a program construction with-
out considering where you would use it, so let’s see how we can use the while construc-
tion to improve the theme park ride selector that we worked on in the previous chapter.

Repeat a sequence of statements
using while
In Chapter 5, we wrote a ride selector program to help theme park visitors discover
whether they can go on a particular ride. The user selects a ride, and the program asks
for his or her age (if the ride has an age restriction) and then tells the would-be rider
whether he or she can go on that ride.

The program we created works very well but currently works only once. The program
ends after it has told the user whether he or she can go on the selected ride. We need
a way to make the program repeat so that it can deal with multiple users. We do this
using a while construction. Figure 6-1 shows the anatomy of the while construction
in a Python program.

condition
(value that is
True or False)

:
colon

while
(start of the while

construction)

suite
statements

Figure 6-1 The while construction

The while construction looks remarkably like the if construction we saw in Chapter 5.
However, the constructions differ in their behavior. An if construction performs the
statements it controls if a condition is True. A while construction performs the state-
ments while a condition is True. The sequence of operations of a while construction is
as follows:

1. The Python engine sees the word “while” and starts performing a while
construction.

2. The Python engine tests the condition after the word while. If the condition is
found to be False, the statements controlled by the while are skipped and the
Python engine moves to the first statement after the while construction.

Investigating the while construction
We can use the Python Shell in IDLE to investigate how the while construction works:

Question: Can we use Boolean values to control a while construction?

Answer: Yes, we can. Open the Python Shell and type the following:

>>> while False:

When you press Enter at the end of this line, you’ll notice that the cursor doesn’t go back
to the left-hand margin. You saw this behavior in Chapter 5 when you investigated the
if construction. The indented statements form the suite of statements controlled by the
while construction. Add a print statement and press Enter:

>>> while False:

 print('Loop')

After you’ve entered the print statement above, enter an empty line statement. Of
course, nothing will be printed because the statements controlled by the while are per-
formed only if the condition is True. In this respect, the while construction is exactly like
the if construction.

CODE ANALYSIS

143The while construction

3. If the condition is found to be True, the statements controlled by the while
construction are performed.

4. The Python engine loops back to step 2.

The Python engine only moves past a while construction when the while condition
becomes False. If you find this confusing, consider that we humans do this kind of
thing frequently:

 ● while there_are_dishes_to_wash: wash a dish

 ● while there_are_exams_to_grade: grade an exam

 ● while the_kettle_has_not_boiled: wait a minute

The while construction is just the way that we make a Python program repeat a
behavior as many times as we need.

Question: Can I make a loop that goes on forever?

Answer: It turns out that this is very easy. Enter the following statements followed by an
empty line:

>>> while True:

 print('Loop')

The word “Loop” will be printed repeatedly. This program will never stop. You might think
that Python would refuse to run a program that would never end, but this turns out not
to be the case. Fortunately, Python provides a way of stopping a running program in its
tracks. Hold down the Ctrl key and press C. This sends a “break” command to the Python
Shell telling it to interrupt the running program and stop.

>>> while True:

 print('Loop')

Loop

Loop

Loop

LoopTraceback (most recent call last):

 File "<pyshell#8>", line 2, in <module>

 print('Loop')

KeyboardInterrupt

>>>

Depending on what else your computer is doing, you might need to press Ctrl+C several
times. If the program refuses to stop, make sure your cursor is in the IDLE Python Shell
when you enter the command. If you can’t get the command to work, you can use the
Interrupt Execution option from the Shell menu, as shown below.

144 Chapter 6 Repeating actions with loops

You can use the Interrupt Execution option to interrupt any running program that is
stuck in a loop. You might wonder why an infinite loop program didn’t completely halt
your computer. After all, this usually happens in science fiction shows when one of the
crew saves the day by giving some rogue hardware a tough puzzle to solve. Fortunately,
modern operating systems, such as Windows, macOS, and Linux are very good at sharing
computer time with multiple active programs.

Question: Will the following program ever print out the message, Outside loop?

while True:

 print('Inside loop')

print('Outside loop')

Answer: No. The while construction will never end, so the final print statement will
never be reached.

Question: Will the following program ever print out the message Inside loop? Will it print
Outside loop?

while False:

 print('Inside loop')

print('Outside loop')

Answer: The while construction will never execute the statements controlled by it,
which means it will never print Inside loop. However, the program will print Outside
loop once it has moved past the statements controlled by the while construction.

Question: What will the following program print?

EG6-01 Loop with boolean flag

flag = True

while flag:

 print('Inside loop')

 flag = False

print('Outside loop')

Answer: The only way to work out what this program will do is for us to run it just like
the Python engine would. The variable flag is of type Boolean, and it is set to True by
the flag = True statement at the start of the program. The first time that flag is tested
by the while construction, it is set to True, and the statements in the construction are
obeyed. The first statement controlled by the while prints the message Inside loop.
The second statement sets the value of the variable flag to False. When the while con-
dition tests the value of flag the second time, it finds that it is False, so the loop ends.

145The while construction

You might think there’s something dangerous about changing the value of the variable
that controls the execution of a while construction, but it is a very common program-
ming technique.

Question: What will the following program print?

flag = True

while flag:

 print('Inside loop')

 Flag = False

print('Outside loop')

Answer: You might think this is a stupid question. The code looks the same as in the
previous question. However, there is a crucial difference between the two code sam-
ples that would cause this program to print Inside loop indefinitely. If you look very
carefully, you’ll see that we have set the value of a variable called Flag to False inside the
loop. The intention is to stop the loop, but this will actually create a new Boolean variable
called Flag, which is set to False. The variable controlling the loop is called flag, and
the two variables are different.

This illustrates a really important point with Python programs: Tiny errors can produce
significant effects. We’ve seen that the Python engine sometimes tells us that we have
typed something incorrectly, but in this case, no error was detected. I don’t know of a
magic solution for this, but if one of your loops suddenly seems to run without stopping,
at least you now know one possible reason.

Question: What will the following program print?

EG6-02 Loop with counter

count = 0

while count < 5:

 print('Inside loop')

 count = count+1

print('Outside loop')

Answer: When you understand the answer to this question, you can call yourself a “while
construction ninja.” The count variable is initially set at 0, and the condition controlling
the while construction will become False as soon as the count variable is no longer less
than 5. Each time round the loop, the count variable is made larger by one. So, the pro-
gram should print out the message, Inside loop, five times before the while construc-
tion completes.

146 Chapter 6 Repeating actions with loops

If you’re having trouble understanding what’s going on here, think of the while con-
struction as acting like a doorman at a nightclub. The doorman is given a piece of paper
to keep track of the number of people coming into the nightclub. Initially, the piece of
paper has the number 0 written on it. Each time the doorman is about to let someone
in, he checks this number against the room limit (which is 5). If there are fewer than five
people, he lets the person in and increases the count. Otherwise, he displays a “Club Full”
sign and goes off to do other things.

You might like to consider answers to the following additional questions:

How do I change the program to print out Inside loop 100 times?

Can you think of ways that the loop could fail, bearing in mind the problems that we had
with a Flag variable?

Create a looping selection program
You can use a while to make a theme park ride selector that runs continuously. All you
need to do is put all of the statements that implement the theme park behavior into a
while True construction.

Create a looping countdown program
Above, you saw how you could use a counter to count up to 5. Now, we’ll create a countdown
program that counts down from ten to zero over ten seconds. You could use it to manage a
rocket launch, should you ever decide to open a launch pad. You can use the example pro-
gram above as a starting point. You can use the sleep function from the time library to pause
the program for a second between each count.

Once you’ve made a counter like this, you can use it for just about anything, including cook-
ing or exercising.

MAKE SOMETHING HAPPEN

Handling invalid user entry
Currently, the theme park ride selector doesn’t detect whether the user enters an invalid
ride number. If the user types in a ride number outside the range 1–5, the program doesn’t
fail, but it doesn’t report an error either. The owner of the theme park is concerned that
users might think that they can go on a ride because the program hasn’t told them they
can’t. So, we need to write some extra code to detect invalid ride numbers.

147The while construction

148 Chapter 6 Repeating actions with loops

PROGRAMMER’S POINT

Great programmers think defensively
I’m a big fan of what is sometimes called “defensive programming.” I like to view my
programs as little castles that I’m trying to defend from people trying to do them harm.
Before I let anyone into my castle, I must try hard to make sure that I can trust them not to
wreck the place. In the case of the castle, this means having a strong drawbridge and some
guards always on duty to ask, “Friend or Foe?” of people trying to gain entry. For the theme
park ride selector, this means checking to ensure that incoming data is sensible. The ride
number must be in the range 1 to 5, and the user age must be in a sensible range, too. We
call this part of program development data validation.

From experience, I’ve discovered that if anyone manages to make your program do stupid
things by typing in silly values, they’ll look clever, and you, the programmer, will look stu-
pid. I’m very keen to avoid looking stupid. When I write code, I’m very careful to make sure
that invalid inputs will not cause problems for the program.

We’ve been talking about a computer as something that takes in data, does something
with it, and then produces more data output. You can think of data validation as a kind of
filter between raw data and the correct values with which your program needs to work.

Keep in mind that the process of data validation (which you must do to avoid looking stu-
pid) makes your programs much larger. We’ll find that adding the code needed to validate
input values will probably double the size of the code. Whenever you’re thinking about
the amount of work you’ll need to put in to create a program, make sure you allow for this
extra effort.

If I were giving data validation instructions to a human about acceptable ride values,
I’d probably say something like “If the ride number is greater than five or less than
one, then the number is invalid.” We could write this into our program as the following
conditional statement:

if ride_number < 1 or ride_number > 5:

 print('Invalid ride number')

The variable ride_number holds the number of the ride that the user entered. The if
construction contains two tests combined using a logical or. In other words, if one or
the other condition is True, the result evaluated by the logical operator is also True.
The print statement displays a message for the user of the program.

If this code looks strange to you, go back to Chapter 5 and refresh your understanding
of if constructions and Boolean expressions. To understand what the if condition in

If either condition is true, the ride
number is wrong

 Print out an error message if the
ride number is wrong

Add ride number validation to the theme park
ride selector
You can use the above code to add ride number validation to the theme park ride selector.
Remember that the while construction above must be added after the ride_number value
has been read by the program.

MAKE SOMETHING HAPPEN

149The while construction

the above code does, try reading the first statement out loud. Remember that the <
operator means “less than” and the > operator means “greater than.”

The statement allows a program to detect when a ride number is invalid, but it doesn’t
provide any repeating behavior. We want the program to repeatedly request ride
numbers until a number in the correct range is entered.

Make a loop to validate input
You can use the above if construction to create a test that validates a ride number, but
you really want the program to evaluate the number, determine if the number is or is
not in the acceptable range, and if unacceptable, ask the user for another number. In
other words, you want to repeat a read operation while the number given is wrong.

ride_number_text = input('Please enter the ride number you want: ')

ride_number = int(ride_number_text)

while ride_number < 1 or ride_number > 5:

 print('There is no ride with that number')

 ride_number_text = input('Please enter the ride number you want: ')

 ride_number = int(ride_number_text)

print('You have selected ride number:',ride_number

The statements that print the error message and read in a new value are controlled by
the condition in the while construction. If an invalid ride number is entered, the user
will be asked to input another. This means that the only way the program can reach
the print statement following the while construction is by the user entering a valid
ride number.

Read the ride number test

Convert the text into an integer

Repeat while the ride number is invalid
 Print an error message

 Ask for the ride number again
 Convert the text into an integer

 Get here when the ride
number is valid

When good loops go bad
You can learn a bit more about how loops work by looking at another example. At first
glance, the following code might seem identical to the previous code. And if you run this
program, it seems to work fine. If you give a valid age, the program prints Thank you for
entering your age.

 1. # We need to get the age of the user

 2. age_text = input('Please enter your age: ')

 3. age = int(age_text)

 4. while age < 1 and age > 95:

 5. # repeat this code while the age is invalid

 6. print('This age is not valid')

 7. age_text = input('Please enter your age: ')

 8. age = int(age_text)

 9. # when we get here, we have a valid age value

10. print('Thank you for entering your age')

Question: What is the fault in the program?

Answer: The fault is in line 4. The logical expression used here is slightly different from
the one used earlier. This expression says, “while age is less than one and age is greater
than 95.” When you read it out loud, it sounds silly. How can a number be less than one
and greater than 95? No such value exists. But it turns out that the compiler is quite
happy to compile a program that contains a mistake like this.

Question: What will the fault cause the program to do?

Answer: Because there is no number that is both less than 1 and greater than 95, the
expression controlling the while construction can never be True, which means that the
condition will never repeat. In other words, it will regard every age value as correct. This is
very dangerous, because if you don’t test the program with invalid values, you will never
notice this problem.

Question: How do I fix this?

Answer: It looks like the programmer’s intention was to create a while construction to
reject ages less than 1 or greater than 95. We can get this behavior by replacing the and
in line 4 with an or.

4. while age < 1 or age > 95:

CODE ANALYSIS

150 Chapter 6 Repeating actions with loops

Always test failure behaviors along with
successful ones
This is a very important point to consider when you write software. You must test the code
you write that is supposed to deal with errors. Software engineers talk about the “happy path”
through a program in which the user enters the right values, the network connection works,
there’s enough space on the disk drive, and the printer doesn’t jam. When programmers write
software, they tend to focus on this happy path without giving much thought to the depress-
ingly large number of ways a program can go wrong. However, this is a dangerous way to write
code. A great programmer will proactively look for things that can go wrong, build in the code
to deal with the error conditions, and then—crucially—take the trouble to test to ensure that
this code works. This is another aspect of the “defensive programming” approach.

In the case of this age program, I’d insist on testing it with the ages 0, 1, 50, 94, 95, and 96.
These values should let me ensure that the invalid ages (0 and 101) are rejected and that all
the other ages (including the values on the boundaries) are accepted. In fact, I would find
a way that I could test the code automatically (you’ll learn about this later in the book) so
that I can perform the tests at regular intervals. The best test values are the ones around the
boundaries. So, if I’m writing a program that’s supposed to reject any numbers larger than 40,
I’d test it with the numbers 39, 40, and 41

WHAT COULD GO WRONG

Add validation to the theme park age input
Now you can add age validation to the theme park ride selector. The theme park owner has
told you that the minimum age for anyone going on a ride at the theme park is 1 year, and the
maximum age is 95. Use these values in your program.

MAKE SOMETHING HAPPEN

151The while construction

152 Chapter 6 Repeating actions with loops

Detect invalid number entry using
exceptions
The theme park ride selector is almost ready for release, but there is still one problem
that must be addressed. We have made the program reject values outside the correct
range, but the program will still fail if the user doesn’t type in a valid number value.

Please enter the ride number you want: three

Traceback (most recent call last):

 File "C:/Users/Rob/RideSelecter.py", line 16, in <module>

 ride_number = int(ride_number_text)

ValueError: invalid literal for int() with base 10: three

The user has typed the text three, and the program has crashed with a red error mes-
sage. The int function is not clever enough to work out that the word three means a
number. The method just sees this as a string that doesn’t contain any numeric digits.

This is a big problem for the int function, which doesn’t want to return a number if it
can’t make sense of the string it has been given. The int function would much rather
the program be made to stop because there is no point in continuing if the incoming
data is not valid. In Python terms, the int function raises an exception. Raising an
exception is the computer equivalent of kicking over the table when you’re losing a
game of chess. The current program is abandoned.

You might think this is a bit extreme. All the user did was enter text when a number
was expected. Why such a fuss? The answer is very important. When a program goes
wrong, it is crucial that the user knows as soon as possible. There is only one thing
worse than a broken program, and that is a broken program that the user doesn’t
know is broken. It is one thing for a word processor to give you an error when you try
to save a file; it is quite another (and much worse) thing for a word processor to leave
you thinking the file was saved when it wasn’t.

If int just kept going—perhaps returning a value of -100000, which means, “I didn’t
understand the text that was entered,”—there would be potential for huge problems.
If a programmer just assumed that int always returns a value, it would cause pro-
grams to be given invalid data, which would result in incorrect outputs. The only sensi-
ble thing that int can do in this situation is to raise an exception.

In other words, exceptions are how Python programs deal with errors in situations
where it would be dangerous to continue running. Exceptions provide a way for a
program to be stopped from doing the wrong thing.

 Output from the running program
 Start of description of the error

 Path to the program file
Statement where the exception was raised

 Exception description

153The while construction

You can think of an exception as a description of why something didn’t work. We
will see quite a few different exceptions as we gain more experience writing Python
programs. When the Python engine detects an exception, it prints a brief description
of the position the program had reached, followed by details of the exception that
was raised. If the int function is unable to convert a text string into an integer it raises
a ValueError exception.

If we want our program to retain control when an exception is raised, we can add
error handlers using a Python construction called try. Statements that might raise
an exception are written after the keyword try. If any of the statements raise an
exception, the execution of the program instantly moves to a block of code (the
error handler) that deals with that exception. You can see how this works in the
following program.

EG6-03 Catching exceptions

try:

 ride_number_text = input('Please enter the ride number you want: ')

 ride_number = int(ride_number_text)

 print('You have entered',ride_number)

except ValueError:

 print('Invalid number')

In the above code, the start of the exception handler is marked by the except key-
word, which is followed by the exception type that the handler will deal with. In the
above example, the exception handler is dealing with the ValueError exception that
would be raised by the int function if the user entered text that didn’t contain a valid
number. The ValueError exception handler displays an appropriate message.

If the user enters a valid ride number value, the program will continue to the print
statement after the int exception. If the int function raises an exception, the state-
ments beyond the point at which the exception was raised are not obeyed.

If you are unclear about what’s happening here, consider what we are trying to do.
We know a user might enter text rather than a number, causing the int function to
raise an exception because it can’t convert text into a number. Our program needs a
way of responding to this eventuality; the block of code after the except statement
does just that.

Figure 6-2 shows the layout of an exception construction, showing two exception
handlers. However, a program could have lots of handlers or only one. You’ll see
how to handle multiple exceptions later in this chapter when we create a program
that rejects invalid number text and prevents a user from being able to interrupt the
program using Ctrl+C.

 Start of the try construction

 Statements that might raise an exception

 Start of an exception handler
 Statements that are performed if an exception is raised

154 Chapter 6 Repeating actions with loops

:
colon

try
(start of the try
construction)

suite
statements

name
(exception

name)

name
(exception

name)

:
colon

:
colon

except
(start of an exception

construction)

except
(start of an exception

construction)

suite
statements

suite
statements

Figure 6-2 An exception construction

Exceptions and number reading
When an exception is raised, the flow of a program is interrupted and all statements
following the exception will be ignored.

ride_number = int(ride_number_text)

print('You have entered', ride_number)

In the above code sample, there is no guarantee that the second statement will be
obeyed. If the contents of ride_number_text cannot be converted into an integer, the
int function will raise an exception that diverts the program before the print state-
ment is reached. However, we really want the program to give users another chance to
enter a value if they happen to enter an invalid number. We’ve already done this in the
section “Make a loop to validate input” above. There we created a while construction
that repeatedly asked for another value when the user enters values that are out of
range (for example, a ride number value of 10). Now, we need to improve our program
to deal with invalid number text.

This statement may raise an exception
This statement might never be reached

Handling exceptions in loops
We want to make a program that will perform a while construction as long as the user keeps
typing in text that cannot be converted into a number. Look at the following code.

 1. #EG6-04 Handling invalid text

 2. ride_number_valid = False # create a flag value and set it to False

 3. while ride_number_valid == False: # repeat while the flag is False

 4. try: # start of code that might throw exceptions

 5. ride_number_text = input('Please enter the ride number you want: ')

 6. ride_number = int(ride_number_text) # convert the text into a number

 7. ride_number_valid = True # if we get here, we know the number is OK.

 8. except ValueError: # the handler for an invalid number

 9. print('Invalid number text. Please enter digits.') # display an error

10. # When we get here, we have a valid ride number

11. print('You have selected ride', ride_number)

Question: What is the purpose of the variable, ride_number_valid?

Answer: This variable is a flag or state variable. It is not concerned with managing data
held by the program (that is for variables such as ride_number). Instead, this variable
allows the program to track whether the user has entered a valid ride number. At line 2,
the value of ride_number_valid is set to False. It is only set to True following the
successful completion of the int function call on line 6. The statement on line 7 is obeyed
only if no exception is raised by the call to int.

Question: How many times would you expect the while construction to loop when the
program is used?

Answer: I’d expect the user to enter a valid number. If they do this, the while construc-
tion will be performed once. The second time around the loop, the value of ride_num-
ber_valid would be True, which would cause the loop to stop.

Question: Why don’t we have to test ride_number_valid at line 10, to make sure that the
ride number is valid?

Answer: We know that a while construction will continue while the condition con-
trolling it is True. Line 10 is outside the while construction (we know this because it is
not indented). We can be sure that the ride number must be valid at this line because the
program would not have reached it otherwise.

CODE ANALYSIS

155The while construction

156 Chapter 6 Repeating actions with loops

Handling multiple exceptions
Earlier in this chapter, you created a program that ran without stopping, and you had
to use a control sequence (Ctrl+C) to stop the program running. A user can enter this
key combination at any time to stop your program, which means that people using
the ride selection program could cause it to fail.

Please enter the ride number you want:

Traceback (most recent call last):

 File "C:/Users/Rob/OneDrive/Begin to code Python/Part 1 Final/Ch 06 Loops/code

 /samples/#EG6-04 Handling invalid text.py", line 5, in <module>

 ride_number_text = input('Please enter the ride number you want: ') # read in

 some text

KeyboardInterrupt

If the user presses Ctrl+C while entering a number, the program is interrupted, as you
see above. One way to fix this would be not to use keyboards that contain the Ctrl key.
However, we can also address this issue in the program.

The try construction can be followed by a number of except handlers, one for each
exception that the program must handle. The exception caused by the user pressing
Ctrl+C is called a KeyboardInterrupt. We can add a handler for that as follows:

 1. #EG6-04 Handling invalid text

 2. ride_number_valid = False # create a flag value and set it to False

 3. while ride_number_valid == False: # repeat while the flag is False

 4. try: # start of code that might throw exceptions

 5. ride_number_text = input('Please enter the ride number you want: ')

 6. ride_number = int(ride_number_text) # (might raise exception)

 7. ride_number_valid = True # if we get here, we know the number is OK.

 8. except ValueError: # the handler for an invalid number

 9. print('Invalid number text. Please enter digits.') #

10. except KeyboardInterrupt: # the handler for an invalid number

11. print(Please do not try to stop the program.') #

12. # When we get here, we have a valid ride number

13. print('You have selected ride', ride_number)

There are now two except parts to the try—at lines 8 and 10. If either of these excep-
tions are raised, the program moves to the matching handler and prints the appropri-
ate message.

157The while construction

Plan for Failure
It might seem depressing, but when you write a program, you should always be thinking
about how it could fail and what the program should do about it. Whenever you expect the
user to type in some data, you should regard this as a potential failure point and make appro-
priate arrangements. Another important rule is that you should never catch exceptions in a
way that hides errors. You could stop a program from generating exceptions by enclosing all
the statements in a try…except construction, but this might mean that other programmers
(and perhaps users) will think your program is working perfectly when it has actually gone
wrong internally, which would be very bad.

In the case of the program above, we know exactly what will cause exceptions (the int
function) and exactly why errors would occur (because the user has typed in something that
is not a number or tried to stop the program). Armed with this knowledge, we can make the
program behave sensibly in these situations.

WHAT COULD GO WRONG

Break out of loops
The program to reject invalid entries works well, but we can simplify the construc-
tion slightly by using another feature of Python loops. The break statement tells a
program to break out of a loop. As soon as Python finds a break statement, it stops
running code in the loop and instead moves to the statement immediately following
the loop program.

 1. # EG6-06 Using break to exit loops

 2. while True: # repeat until we break out of the loop

 3. try: # start of code that might throw exceptions

 4. ride_number_text = input('Please enter the ride number you want: ')

 5. ride_number = int(ride_number_text) # (might raise exception)

 6. break # number OK - break out of loop

 7. except ValueError: # the handler for an invalid number

 8. print('Invalid number text. Please enter digits.') # display error

 9. # When we get here, we have a valid ride number

10. print('You have selected ride', ride_number)

The code above uses a break statement to stop reading numbers when the user has
entered a correct number. We know that line 6 is reached only if the int function
call on line 5 succeeds. This means that the program can break out of the loop. The

158 Chapter 6 Repeating actions with loops

statement that will be obeyed after line 6 is on line 9, because this is the first state-
ment after the while construction.

You can control the execution of the break statement by using an if construction, so
that a program can cause a loop to end “early.”

 1. # EG6-07 Loop with condition ending early

 2. count=0

 3. while count<5:

 4. print('Inside loop')

 5. count = count+1

 6. if count == 3:

 7. break

 8. print('Outside loop')

Line 6 tests the value of count, and the break statement is performed when count
reaches the value 3. This means that the while construction will not end when count
reaches 5. Instead it will end earlier when count reaches 3.

PROGRAMMER’S POINT

Don’t use too many break statements
A loop can contain many break statements, but I’m not keen on adding lots of breaks.
Each time you add a break statement, it provides another way in which a loop can end. In
the above loop, with only one break statement, I can be sure that the only way to reach
statement 10 is for the int function to complete successfully. If there were lots of break
statements scattered through the loop, this would not be the case, and I’d find the pro-
gram much harder to understand.

Return to the top of a loop with continue
Every now and then you’ll write a program that needs to go back to the top of a loop
and run the loop again. You’ll do this when you have gone through the statements as
much as needed for a particular pass around the loop. To return to the loop’s begin-
ning, Python provides the continue keyword, which says something along the lines
of, “Please do not go any further this time around the loop. Go back to the top of the
loop and then go around again if you are supposed to.”

159The while construction

As an example, imagine that the theme park ride number 3, Jungle Adventure Water
Splash, has sprung a leak and is now no longer available. If the user selects ride
number 3, you want the program to display a message and then ask the user to select
another ride.

EG6-08 Ignore Ride 3

while True:

 ride_number_text = input('Please enter the ride number you want: ')

 ride_number = int(ride_number_text)

 if ride_number == 3:

 print('Sorry, this ride is not available')

 continue

 print('You have selected ride number:',ride_number)

If the user selects ride number 3, the if condition is triggered, which controls two
statements. The first statement prints a message for the user, and the second per-
forms the continue. This means that the final statement is reached only if the user has
selected a ride number other than 3. Note that this is a greatly simplified version of
the ride number entry program, but it does show how the continue statement is used.

PROGRAMMER’S POINT

You won’t use continue as often as you use break
There are quite a few situations in programs where the break keyword is useful. However,
the continue keyword is used much less frequently. Don’t feel like you aren’t a true pro-
grammer if you don’t find yourself using continue very often.

Count a repeating loop
The loops in the theme park ride selector are quite simple. However, you can also
make loops that repeat a number of times. We saw this earlier in the chapter when we
examined the while loop. This is achieved by using a variable to count the number of
times that the loop has been performed. The program can set the counter variable to
a starting value, and each time around the loop, the variable can be updated until it
reaches the limit that causes the loop to stop.

 If this statement is reached, the loop goes around again

160 Chapter 6 Repeating actions with loops

You might use this kind of loop to create a times-table tutor to help you (or someone
else) with multiplication. You could use the loop to make this program print, “1 times
2 is 2, 2 times 2 is 4,” and so on. Here is the entire program. It uses a while loop, which
produces each successive output as it runs.

EG6-09 Times Table Tutor

count = 1

times_value = 2

while count < 13:

 result = count * times_value

 print(count,'times', times_value,'equals',result)

 count = count + 1

There are two parts of this program that you really must understand. The first is the
loop and the expression that controls it:

while count < 13:

The while loop is controlled by a logical expression that becomes False when the
value of the count variable reaches the value 13 (this is because the value 13 is not less
than 13; it is equal to 13).

The second important part of the program is the assignment statement that updates
the counter:

count = count + 1

Each time this statement runs, it calculates the value of count plus one and then stores
this in the variable count.

Counterintelligence
Here is the times-table code with line numbers. Let’s take a closer look:

1. # EG6-09 Times Table Tutor

2. count = 1

3. times_value = 2

4. while count < 13:

5. result = count * times_value

6. print(count,'times', times_value,'equals',result)

7. count = count + 1

Question: Which statement would you have to change if you wanted to generate the times
table for 3 instead of 2?

Answer: You would change the assignment statement at line 3. If you set the variable
times_value to 3, this will cause the times table to display multiples of 3.

Question: Which statement would you have to change if you wanted to generate up to the
24 times table, rather than stopping at 12?

Answer: You would change the end-point of the loop in line 4 so that the loop continues
while the value of count is less than 25.

Question: What would happen to the program if I changed the statement at line 7 to the
following statement?

count = count - 1

Answer: This statement makes the variable count smaller each time the statement is
obeyed. The code in the times-table loop would calculate and display negative multiples,
and the loop would never stop because the count variable would always be less than 13.
At this point, the user would have to use Ctrl+C to stop the program.

CODE ANALYSIS

Allow the user to select the times value
You can improve the times-table program to make one that asks the user for a value to work
with. You could allow the user to calculate multiples of 25 if you like, or you could use valida-
tion so that the only times tables that can be produced are in the range 2 to 12.

MAKE SOMETHING HAPPEN

161The while construction

162 Chapter 6 Repeating actions with loops

The for loop construction
You have seen that you can manage perfectly well with while loop constructions. The
times-table program works fine. However, the designers of Python invented a second
kind of loop that was created to make it easy for programmers to work through lots of
data. This is called the for loop (see Figure 6-3).

variable
function name

(variable controlled
in the for)

:
colon

in items
(items to work

through)

for
(start of the for
construction)

suite
statements

Figure 6-3 The for loop construction

In Python, a loop works on a collection of items, taking each item in turn. Each time
the loop is run, the variable is set to the next item in the collection. In Python, it is very
easy to create a collection of items. One type of Python collection is called a tuple.
We’ll discuss tuples in more detail in Chapter 8. For now, perhaps the most important
thing you need to know about a tuple is that it doesn’t really matter how you pro-
nounce it. You can say the word to rhyme with “supple” or with “scruple.”

Tuples are very useful for making a quick collection of things that you want to treat
as a single lump of data. To do this, simply write a sequence of values separated with
commas and enclosed in brackets:

names=('Rob','Mary','David','Jenny','Chris','Imogen')

The variable names now contains six name strings. A Python program can use a for
loop to work through these names and print each one:

forname in names:

 print(name)

The loop will go around once for each item in the tuple. The control variable (which
in this loop is called name) will be set to the next name in the tuple each time the loop
is run. In other words, the first time the loop is run, the value of name will be Rob. Next
time around, the value will be Mary, and so on, to the end of the list.

 The control variable for use in the loop
 Test the counter

163The for loop construction

EG6-10 Name printer

names=('Rob','Mary','David','Jenny','Chris','Imogen')

for name in names:

 print(name)

This means that the above Python program will print the following:

Rob

Mary

David

Jenny

Chris

Imogen

You might think that I’ve been a bit silly using variables called name and names because
it would be easy to get the two confused. However, I think this makes sense. The vari-
able names denotes a plural, indicating that it contains multiple items. However, the
variable name is singular, which indicates that it is one name in the list.

Python provides a function called range that will generate a sequence of numbers
you can use if you want to make a program count through a succession of values.

EG6-11 Times Table Loops

times_value = 2

for count in range(1, 13):

 result = count * times_value

 print(count,'times', times_value,'equals',result)

This is the for loop–powered version of the times-table program we saw earlier.
The range function above is given two arguments. The first is the lower limit of the
range to produce; we want to start our times table at 1. The second is the exclusive
upper limit of the range of values, meaning that this value is the first one that will be
excluded from the list. In other words, the range will stop at 13, but will not contain 13.

The for loop construction can contain break and continue statements, which work
in exactly the same way as they do in the while loop constructions. When a continue
statement is performed in a for loop, it causes the loop to move the control variable
onto the next item in the collection.

 Create a range of values from 1 to 12

Loops, break, and continue
You can improve your understanding of the way break and continue are used by looking at
a few simple programs.

Question: What would the following code print?

 1. # EG6-12 Code Analysis 1

 2. for count in range(1, 13):

 3. if count == 5:

 4. break

 5. print(count)

 6. print('Finished')

Answer: It would print “1,2,3,4” and then “Finished.” When the value of count reaches 5,
the logical expression in the if condition on line 3 would become True (because count
is now equal to 5). The break statement would cause the program to exit the loop imme-
diately and continue running the program at line 6. The program would not print the
value 5 because it breaks before it reaches the statement that prints the value of count.

Question: What would the following code print?

 1. # EG6-13 Code Analysis 2

 2. for count in range(1, 13):

 3. if count == 5:

 4. continue

 5. print(count)

 6. print('Finished')

Answer: It would print “1,2,3,4,6,7,8,9,10,11,12”. Note that it would not print “5” because
when the value of count is 5, the conditional statement at line 3 will cause the program
to restart the loop, which means that the print method is not called for the value 5.

CODE ANALYSIS

164 Chapter 6 Repeating actions with loops

Question: What would the following code print?

 1. # EG6-14 Code Analysis 3

 2. for count in range(1, 13):

 3. count = 13

 4. print(count)

 5. print('Finished')

Answer: You need to be careful with this example. If you’ve used other programming
languages, you might expect the loop to end earlier because the value of count (which
controls the loop) is being set to a value that should cause it to end. This is not what
happens. In fact, the program will print out “13” twelve times. This is because each time
around the loop, the value that has been extracted from the range is replaced with the
value 13 before it is printed.

Question: Would the following program run forever?

 1. # EG6-15 Code Analysis 4

 2. while True:

 3. break

 4. print('Finished')

Answer: No. It is true that the logical expression controlling the while construction is set
to True, which means always repeat the loop, but the content of the loop body contains a
break statement that would cause the loop to exit.

Question: Would the following program print the message “Looping”?

 1. # EG6-16 Code Analysis 5

 2. while True:

 3. continue

 4. print('Looping')

Answer: No. The continue will send program execution back to the top of the while
loop before the print statement is reached. The program will run forever, but it will
never print the message.

165The for loop construction

Question: What would the following program do? Is it legal?

 1. # EG6-17 Code Analysis 6

 2. for letter in 'hello world':

 3. print(letter)

Answer: This program would work. Python regards a string as a collection of letters.
So, it is perfectly possible to use a string as the basis of a for loop like this. The program
would print out each letter on a separate line.

h

e

l

l

o

w

o

r

l

d

Make a times-table quiz
Reverse the behavior of the times-table program so that rather than printing out the times-
table your program instead asks questions like “What is 6 times 4?” The user could enter their
answer, and the program could compare it with the correct answer and keep score of how
many correct answers are given. You could use a loop to make the program produce 12 “times-
table” questions, and you could use random numbers so that the quiz is different every time.

MAKE SOMETHING HAPPEN

166 Chapter 6 Repeating actions with loops

Make a digital alarm clock
You can use the code that we worked on in Chapter 6 to create a digital clock that also sounds
alarms and displays messages at particular times of the day. You could even display back-
ground images behind the time digits by using the display_image function from snaps.

MAKE SOMETHING HAPPEN

167Make a digital clock using snaps

Make a digital clock using snaps
We can use a loop to repeatedly display the time using the function draw_text
from the snaps library. We used this method in Chapter 5 to create a program that
displayed alarm messages. Now we can use it to display a digital clock that updates
every second.

EG6-18 Digital Clock

import time

import snaps

while True:

 current_time = time.localtime()

 hour_string = str(current_time.tm_hour)

 minute_string = str(current_time.tm_min)

 second_string = str(current_time.tm_sec)

 time_string = hour_string+':'+minute_string+':'+second_string

 snaps.display_message(time_string)

 time.sleep(1)

This program contains a loop that continuously reads the time from the clock and
displays it. It also contains a call to the sleep function that will stop the program from
updating the screen more than once a second.

 Loop that never ends

Get the time

Get strings containing the time information

Build the time string
Display the time string

Pause the program for a second

168 Chapter 6 Repeating actions with loops

What you have learned
In this chapter, you learned how to create programs that contain statements that are
repeated when the program runs. To learn this, you worked with the different looping
constructions provided by Python.

The first of these, the while construction, repeats statements as long as the logi-
cal expression in the condition is True. If you simply put the Boolean value True as
the condition, the loop will never end. In some cases, this is a reasonable thing to
do because many programs (games, for example) contain behaviors that must be
repeated while they run.

The second loop construction is completely different from the while construction. It
has as much to do with collections of data as repeating code. The for loop is designed
for situations in which the programmer wants to work through a collection of values
and perform some action on each one. The collection of values can be held in a struc-
ture (we know about a data structure called a “tuple”), or we can use another Python
function called range that can produce a defined sequence of values.

The Python language also provides a way for a program to break out of a loop by
using the break keyword. This is useful if the program has reached a state where it is
not meaningful for the loop to repeat. The continue keyword causes a loop to con-
tinue from the start of the loop statements, once the end condition has been tested.

Here are some points to ponder about loops.

Do we really need loops?

No. In theory, we could write every program using a sequence of statements and
conditions. Loops could be “unrolled” into sections of repeated code. A loop that per-
forms an action 10 times could be replaced by 10 copies of the code in the loop. Doing
without loops would make programs much larger, but it would work.

Are loops dangerous?

In a way. An “unrolled” loop is guaranteed to run through to completion. There is no
way it can get stuck or execute the wrong number of times. However, we have seen
several times that if we get the end conditions wrong, we can have loops that get
stuck looping forever or loop the wrong number of times. In other words, using loops
in a program introduces the potential for new kinds of errors. In some absolutely
critical programs, such as those controlling aircraft or nuclear reactors, programmers
sometimes avoid loops for just this reason.

7
Using functions to
simplify programs

Investigating functions
We can use the Python Shell to investigate how functions are created and used. Open the
IDLE command shell and enter the Python statements below at the >>> prompt. Press Enter
at the end of the second statement.

>>> def greeter():

 print('Hello')

Question: Why did the program not perform the print action after you entered the print
statement?

Answer: Currently, the statements you’re entering are being stored as part of the
greeter function. The function has not yet been called.

MAKE SOMETHING HAPPEN

172 Chapter 7 Using functions to simplify programs

What makes a function?
A function is a chunk of Python code that you name. When Python encounters a
function, it takes the statements that describe what the function should do and stores
them, ready for use later in the program. Let’s look at a simple function.

def greeter():

 print('Hello')

This very simple function simply prints a message. Once the function has been
defined, a program can use it. When a function is called, it performs the statements
given when it was defined.

>>> greeter()

Hello

>>>

The greeter function doesn’t do much, but you can create functions that contain
many statements. Remember that your program must define the function before it
can be called.

Question: How do I tell Python that I’ve finished entering the greeter function?

Answer: You do this in the same way that you tell the Python Shell you’ve finished
entering the statements in a loop, or those controlled by an if construction: Enter an
empty line.

>>> def greeter():

 print('Hello')

>>>

Question: How do I make a call to the greeter function?

Answer: You can call greeter in the same way you would call any other Python func-
tion. Remember to add an empty list of parameters so that Python knows a function is
being called.

>>> greeter()

Hello

When a function runs, it performs all the statements it contains. In this case, a single message
is printed.

Now look at the following statements (and maybe even run them).

>>> x=greeter

>>> x()

Hello

This is probably the scariest piece of Python you’ve seen so far in this book. It shows you that
functions are just like other variables. In the first statement, a variable called x is set to the
value of greeter. Then, in the second statement, we call x as if it is a function. Python prints
Hello, which is just what the greeter function does.

A program can store the “value” of a function in the same way as it can store a string or a
floating-point value, simply by assigning it to a variable. This is a powerful feature that we’ll
investigate in more detail in Chapter 12.

173What makes a function?

Program pathfinder
In Python, it’s common for one function to call another function. Let’s build our understand-
ing of how functions work by looking at some code.

EG7-01 Pathfinder

def m2():

 print('the')

def m3():

 print('sat on')

 m2()

def m1():

 m2()

 print('cat')

 m3()

 print('mat')

m1()

Question: What will this program display when it runs?

Answer: The best way to figure this out is to work through the program one statement at
a time, just like the computer does when it runs the program. Remember that when a func-
tion is complete, the program’s execution continues at the statement following the func-
tion call. It turns out that the output from the program is exactly what you might expect:

the

cat

sat on

the

mat

Question: What happens if a function calls itself? For example, what if the m1 function called m1?

Answer: The effect is like what you see if you arrange two mirrors so that they face each
other. In the mirrors, you see reflections going off into infinity. When the m1 function calls
itself, your computer will go very quiet for a few seconds and then produce an error mes-
sage something like “RecursionError: maximum recursion depth exceeded.” Each time a
function is called, the Python stores the return address (the place it must go back to) in

CODE ANALYSIS

174 Chapter 7 Using functions to simplify programs

a special piece of memory called the “stack.” The idea is that when a running program
reaches the end of a function, it grabs the most recently stored address of the top of the
stack and returns to where that address points. This means that as functions are being
called and returned, the stack grows and shrinks.

However, when a function calls itself, the Python engine repeatedly adds return
addresses on the stack. Each time the function calls itself, another return address is added
to the top of the stack. At some point, the Python system decides that this has gone on
long enough and the program is halted.

Programmers have a name for a function that works by calling itself. They call it recursion.
Recursions are occasionally useful in programs, particularly when the program is searching
for values in large data structures. However, I’ve been programming for many years and have
used recursion only a handful of times. I advise you to regard recursion as strong magic that
you don’t need to use now (or hardly ever). Loops are usually your best bet for repeating
blocks of code.

Figure 7-1 shows the form of a Python function definition. We can work through each
of these items in turn.

name
function name
(name of the

function)

:
colon

()parameters
(items to feed

into the function)

def
(start of
function

definition)

suite
statements

in the
function

Figure 7-1 Python function definition

The word def (short for “define”) tells Python that a function is being defined. Python
will allocate space for the function and get ready to start storing function statements.
The word def is followed by a single space and then the name of the function. We
decide the name for the function in just the same way as we have chosen names for
the variables we have created. Because a function is associated with an action, it’s a
very good idea to make the name reflect this. I give functions names in the form verb_
noun. The verb specifies the action the function will perform and the noun specifies
the item it will work on. An example would be display_menu. Python has functions
called print and input, and the names for both match their use.

After the name of the function, we have the parameters that are fed into the function.
The parameters are separated by commas and enclosed within parentheses. Parame-
ters provide a function with something to work on. So far, the functions we’ve created
haven’t had any parameters, so there has been nothing between the two parentheses.
Finally, the definition contains a colon, followed by a suite of Python statements form-
ing the body of the function.

175What makes a function?

176 Chapter 7 Using functions to simplify programs

Give information to functions using
parameters
The greeter function shows how functions can be used, but it isn’t really that useful
because it does the same thing each time it’s called. To make a function truly useful,
we need to give the function some data with which to work. You’ve already seen
many functions that are used in this way. The print function accepts items to print.
The sleep function accepts the length of time that the program should sleep. We can
make a times-table function that accepts the times-table to produce.

def print_times_table(times_value):

 count = 1

 while count < 13:

 result = count * times_value

 print(count, 'times', times_value, 'equals', result)

 count = count + 1

A program can use the print_times_table function any time it wants to print a
times table. The function accepts a single argument, which is the times table to
be produced.

print_times_table(5)

The statement above would call the print_times_table function and ask it to print
out the times table for 5. If we want to see the times table for 99, we just need to
change the number that we pass to the function.

print_times_table(99)

Arguments and parameters
From the title of this section, you might expect that we will have a difference of opin-
ion, but in Python, the word argument has a particular meaning. In Python, the word
argument means “that thing you give to the call of a function.”

print_times_table(7)

 times_value parameter

 Use the value of times_value in the function

Arguments and parameters
We can find out more about arguments and parameters by looking at the code that
uses them.

Question: What would the following program do?

EG7-02 Times Table

def print_times_table(times_value):

 count = 1

 while count < 13:

 result = count * times_value

 print(count, 'times', times_value, 'equals', result)

 count = count + 1

print_times_table(6)

Answer: The program prints out the times table for 6.

Question: What would happen if we changed the call of the print_times_table function
to the one below that has a string as the argument? Would the program fail?

print_times_table('six')

CODE ANALYSIS

177What makes a function?

In the above statement, the argument is the value 7. So, when you hear the word argu-
ment you should think of the code that is making a call of the function.

In Python, the word parameter means “the name within the function that represents
the argument.” The parameters in a function are specified in the function definition.

def print_times_table(times_value):

This is the definition of the print_times_table function. It specifies that the function
has a single parameter, which is the name times_value. When the function is called,
the value of the times_value parameter is set to whatever has been given as an argu-
ment to the function call. Statements within the function can use the parameter in the
same way as they could use a variable with that name.

Answer: The program doesn’t fail, but it does something you might not expect.

1 times six equals six

2 times six equals sixsix

3 times six equals sixsixsix

4 times six equals sixsixsixsix

5 times six equals sixsixsixsixsix

6 times six equals sixsixsixsixsixsix

7 times six equals sixsixsixsixsixsixsix

8 times six equals sixsixsixsixsixsixsixsix

9 times six equals sixsixsixsixsixsixsixsixsix

10 times six equals sixsixsixsixsixsixsixsixsixsix

11 times six equals sixsixsixsixsixsixsixsixsixsixsix

12 times six equals sixsixsixsixsixsixsixsixsixsixsixsix

It turns out that Python is able to perform the multiplication operation between strings
and numbers.

The statement below is the one in print_times_table that works out the result. It takes
the count (which goes from 1 to 12) and multiplies it by the times_value (which is a
parameter in the function).

 result = count * times_value

Multiplying two numbers will produce a numeric result. Multiplying a string by a value will
repeat the string the number of times equal to the product. This illustrates an important
principle of the Python language. It will decide what to do based on the type of things with
which it is working. This can lead to programs that don’t do what you might expect.

Question: How do we make the print_times_table function work with integer
parameters only?

Answer: Before we decide to fix this problem, we must decide whether we need to fix it
at all. If we’re using this function in a program that’s already checking the input values,
then perhaps we don’t have to worry about this issue.

If we do try to fix the problem, we must know what should happen. Should the function
print a warning message? Should it stop the program? Deciding on an error strategy is
an important part of program design, and you should do this in consultation with the
customer (if you have one).

In this case, we might decide to be very strict and make the print_times_table func-
tion cause an error if it is not given an integer to work with. It turns out that Python has
a built-in function called isinstance that a program can use to check whether a given
item holds a particular type of data. The isinstance function accepts two arguments,
the item to be tested and the type we are checking. It returns True if the item is of the
given type, and False if not.

178 Chapter 7 Using functions to simplify programs

EG7-03 Safe Times Table

if isinstance(times_value,int)==False:

 raise Exception('print_times_table only works with integers')

The statements above show how we could use isinstance to cause an exception to be
raised if the parameter to the function is invalid. The first statement performs the test to
see if the function has been given an integer. The second statement is one we haven’t
seen before. The second statement raises an exception, which causes the program to stop
with an error.

Traceback (most recent call last):

 File "C:/EG7-03 Safer Times Table.py", line 11, in <module>

 print_times_table('six')

 File "C:/ EG7-03 Safer Times Table.py", line 4, in print_times_table

 raise Exception('print_times_table only works with integers')

Exception: print_times_table only works with integers

You can think of an Exception as a chunk of data that describes why something went
wrong. When an exception is created, it is given a string that describes the error. The
exception can be picked up in a try construction to allow a program to deal with errors,
as we saw in the section “Exceptions and number reading” in Chapter 6. We’ll cover
exceptions in detail later in the text.

 Test the type of the times_value
 Raise an

exception if the
type is not integer

Multiple parameters in a function
A function can have multiple parameters. Currently, the print_times_table function
always prints out 12 results, starting with 1 times the times_value and ending with 12 times
the times_value. If we are printing out tables for mathematical geniuses, we might want
to produce a times table that goes up to 20 times the input value. Alternatively, some
people might prefer smaller tables that only go up as far as five times. We could write a
different function for each of these table sizes, or we could make the function more flexi-
ble by making it accept the size of the times table as well as the number to multiply.

EG7-04 Two Parameter Times Table

def print_times_table(times_value, limit):

 count = 1

 while count < limit+1:

 result = times_value * count

 print(count, 'times', times_value, 'equals', result)

 count = count + 1

179What makes a function?

180 Chapter 7 Using functions to simplify programs

This version of the function has two parameters. The first parameter, times_value, is
the number for which times table is desired; the second parameter is the limit for the
table to be produced.

Now let’s call the function.

print_times_table(6, 5)

The statement above would call the print_times_table function and ask for the times
table for 6 up to 5 times 6.

1 times 6 equals 6

2 times 6 equals 12

3 times 6 equals 18

4 times 6 equals 24

5 times 6 equals 30

Positional and keyword arguments
Consider the following function call.

print_times_table(12, 7)

The statement above makes a call of the print_times_table function, but you might
be forgiven for wondering whether it prints out the times table for 12 or the times
table for 7. You might need to go back to the original code to check the sequence
in which the arguments (12 and 7) are mapped to the parameters (times_value and
limit). Arguments mapped in this way are called positional arguments because the
positions of the arguments given to the function and the parameters defined in the
function determine which argument value maps to which parameter. In other words,
the sample above would print the times table for 12, because the times_value param-
eter was given first in the original definition.

To make things easier for programmers, Python allows you to use keywords to identify
the arguments to a function when you call it.

EG7-05 Keyword Arguments

print_times_table(times_value=12, limit=7)

181What makes a function?

If you use keyword arguments, you don’t have to worry about getting the order of the
arguments correct when you call functions.

print_times_table(limit=7, times_value=12)

This call of the print_times_table function will produce the same result as the previ-
ous one. I find keyword arguments very helpful. When I write a Python function that
accepts more than one argument, I try hard to use keyword arguments for every call
of that function.

Don’t mix positional and keyword arguments
Python will let you mix positional arguments and keyword arguments in a call to a function.
However, it can be hard to work out what is going on when you do this. I strongly suggest
using either all positional arguments (if it is obvious what the arguments mean) or all key-
word arguments.

WHAT COULD GO WRONG

Default parameter values
When we created the first print_times_table function, we assumed that the limit of
the times table to be produced was 12. In other words, the output would go from “1
times” up to “12 times.” Then we allowed the user to specify the limit. However, most
users of our function will want to go up to a limit of 12 times. We can reflect this by
providing a default value for the limit parameter.

EG7-06 Default parameters

def print_times_table(times_value, limit=12):

 count = 1

 while count < limit+1:

 result = times_value * count

 print(count,'times', times_value, 'equals', result)

 count = count + 1

 Default value for the limit parameter

182 Chapter 7 Using functions to simplify programs

Default in this context means, “If I leave this argument out, use this value.” So, users
of the print_times_table function can still specify a different limit value and that
will be used. However, if they omit the limit argument, the default value (12) will be
used instead.

print_times_table(times_value=7)

The statement above would print out a times table for the value 7, and it would print
up to 12 times 7.

The IDLE editor is able to find function definitions and help you fill in the argument
values when you’re writing calls to the functions. In Figure 7-2, you can see what hap-
pens when I start to write a call of the print_times_table function.

Interactive help and functions

Figure 7-2 IDLE function help

The text beneath the cursor is generated by the editor. When I typed in the name of the
print_times_table function, IDLE found that function definition and read the param-
eter list. It will then display that information as you fill in the arguments. You see this
happen for Python’s built-in functions, and it also works for functions that you create.

PROGRAMMER’S POINT

Why I use named arguments and default parameters
I love the named arguments and default parameters features of Python. They make
programs clearer, and you don’t have to wonder what on earth a function actually does.
Named arguments and default parameters also reduce the possibility of programmers
getting the arguments confused, which means a programmer can provide a “standard”
behavior for a function that is easy to modify.

Parameters as values
When a function is called, the value of the argument is passed into the function parameter.
What exactly does this mean?

The following program contains a function (with the interesting name what_would_I_do)
that accepts a single parameter. The function doesn’t do much; it just sets the value of the
parameter to 99. The function is then called using the value of a variable named test as
an argument.

EG7-07 Parameters as values

def what_would_I_do(input_value):

 input_value = 99

test = 0

what_would_I_do(test)

print('The value of test is', test)

Question: What would this program print when it runs? 0 or 99?

Answer: When the code runs, Python follows this sequence:

1. Set the value of test to 0. (Remember, the program starts running at the first state-
ment after the definition of the function.)

2. Call the what_would_I_do function, passing the value of test as an argument.

3. When the what_would_I_do function starts, the parameter called input_value is
assigned the value 0.

4. The what_would_I_do function sets the value of the parameter called input to 99.

5. The what_would_I_do function now ends, and execution returns to the
calling statements.

6. The value of test is printed.

Remember that an argument is the item (a variable) fed into the function. However, Python
uses the value of that variable, not the variable itself. So, the value displayed by the program
is 0. In other words, the program prints:

The value of test is 0

CODE ANALYSIS

183What makes a function?

Creating a teletype printer
For some reason, output from a computer looks more impressive if it is printed slowly. We’ve
seen how to use a for loop to work through the characters in a string, and we know about
the sleep function in the time library, so it might be fun to create a function that will print
out a string one character at a time with a delay between each character.

We could call the function teletype_print. I think it should have two parameters. The first
parameter should be the string to be printed. The second parameter should be the time
interval between the printing of each character. We could give a default value for the delay
of 0.1 (a tenth of a second). This would make the definition of our function look like this:

def teletype_print(text, delay=0.1):

The function can use a for loop to go through each character in the input string, print the
character, and then delay:

for ch in text:

 print(ch)

 time.sleep(delay)

This code looks like it might work, but in fact there is a problem. If we try to print out a word,
we find that each character is printed on a separate line. If the program tries to print out
hello, it will produce the following:

h

e

l

l

o

The word, hello, is printed with one letter on each line because the default behavior for the
print function is to make a new line at the end of the print. However, we can use IDLE’s Help
feature to discover how to fix this problem.

If we start writing a call to the print function and then pause, IDLE will show us the Help for
the print function. The four items at the end of the Help are the ones that we’re interested
in. These items define four parameters and their default values.

MAKE SOMETHING HAPPEN

184 Chapter 7 Using functions to simplify programs

The sep argument specifies the separator to be used between successive items printed
by this print call. By default, a separator space is inserted between printed items. We can
change the separator to a different string or, if we prefer, we can change the separator to an
empty string, which will allow us to print multiple items with no separator.

The end argument tells the print function what to print at the end of the print action. As you
can see from the Help information, the default setting for this argument is \n, which is the
escape sequence for a new line. We can change this to an empty string to prevent the print
function from moving to a new line after each printed item.

The file and flush parameters give a program a low-level control over how the print
function behaves and where it sends its output. We don’t need to change these arguments.

print(ch, end='')

Above, you can see the print statement with the additional argument that changes the end-
of-line string to an empty string. This will print the character but won’t create a new line.

Now, you can create your own teletype printer. Remember that you might need to print a
blank line after the loop that prints out all the characters in the input string.

You can use this print function in some of the programs you’ve already written. It is espe-
cially impressive in the fortune teller program we discussed in Chapter 5. You can also make
the computer output seem even more human by making the delay between the characters
slightly random (using the randomInt function from the random library we saw in Chapter 3)
and by having longer delays when a space character is displayed.

Return values from function calls
A function can return a value. You’ve seen this in many of the programs we’ve written.
Here’s an example:

name = input('Enter your name please : ')

This statement uses the input function. The function accepts an argument (the text
prompt to be shown to the user) and returns a value (the string that the user enters).
Now look at this function header:

def get_value(prompt, value_min, value_max):

185What makes a function?

Functions and return
Let’s take a look at how return is used in a function.

EG7-08 get_value investigation 1

def get_value(prompt, value_min, value_max):

 return 1

 return 2

ride_number=get_value(prompt='Please enter the ride number you want:',

value_min=1,value_max=5)

print('You have selected ride:',ride_number)

CODE ANALYSIS

186 Chapter 7 Using functions to simplify programs

The function is called get_value, and it has three parameters. The first parameter
is the prompt to be displayed for the user—prompt. The second and third variables
are the minimum (value_min) and maximum (value_max) values that the get_value
parameter can return. A program would use this function as follows:

ride_number=get_value(prompt='Please enter the ride number you want:',

value_min=1, value_max=5)

The above call to the get_value function could be used to allow the user to select a
ride in the theme park ride selector program we created in Chapter 4. The program
could also use this function to read the age of a user. We would just need to change
the prompt and the limits of the input value.

The idea here is that we’ll take some software that we’ve already created (our number
input and validation code) and package it up as a function so that we can use it many
times in our programs.

def get_value(prompt, value_min, value_max):

{

 return 1;

}

This version of get_value is not very useful because it always returns the value 1.
However, it does show how return is used. At the start of a project, programmers
frequently make “empty” functions that they fill in later.

 Function header for get_value

 This version of the function always returns 1

Question: What would this program print?

Answer: It would print that the user had selected ride number 1.

You have selected ride: 1

The second return would not be reached because execution of a function ends when a
return statement is reached.

EG7-09 get_value investigation 2

def get_value(prompt, value_min, value_max):

 return

ride_number=get_value(prompt='Please enter the ride number you want:',

value_min=1,value_max=5)

print('You have selected ride:', ride_number)

Question: What would this program print? Would it run correctly?

Answer: If a function is intended to perform a particular activity instead of delivering
a result, the function can contain a return that is not followed by a value (see the code
above). In this case, the function returns a special value called None, which is used in
Python to represent the lack of a useable value. The program above would print out the
value of None, which is the string None.

You have selected ride: None

Python will also return the None value if a statement tries to use the value returned by a
function that does not contain any return statements.

Question: Can a function contain multiple return statements?

Answer: Yes. The program will return from the function when it reaches the first
return statement.

Below, you can see the complete get_value function.

EG7-10 complete get_value

def get_value(prompt, value_min, value_max):

 while True:

 number_text = input(prompt)

 try:

 Function header
 This loop will repeat forever

187What makes a function?

188 Chapter 7 Using functions to simplify programs

 number = int(number_text)

 except ValueError:

 print('Invalid number text. Please enter digits.')

 continue # return to the top of the loop

 if number<value_min:

 print('Value too small')

 print('The minimum value is',value_min)

 continue # return to the top of the loop

 if number>value_max:

 print('Value too large')

 print('The maximum value is',value_max)

 continue # return to the top of the loop

 # If we get here the number is valid

 # return it

 return number

This function repeatedly reads integers until supplied with one in the required range. In
other words, a value of number that is less than value_min or larger than value_max will
cause the loop to repeat. The get_value function ends when a valid value is entered, at
which point the return statement is reached and the function returns the number that
has been read in. We can use this function to read in values from the user.

ride_number=get_value(prompt='Please enter the ride number you want:',

value_min=1, value_max=5)

print('You have selected ride:', ride_number)

PROGRAMMER’S POINT

Designing with functions
Functions are a very useful part of the programmer’s toolkit and form an important part of
the development process. Once you’ve worked out what a customer wants the application
to do, you can start thinking about how you’ll break down the program into functions.
Once you’ve specified the behavior of each function in the application, you can write the
function headers (in other words, pick the function name, the parameters, and any return
value) and then you could even get someone else to write that function for you.

Functions are also useful for saving you from writing too much code. Often, you find that
as you write a program, you write code that repeats a particular action. If you do this, you
should consider taking that action and turning it into a function. There are two reasons
why this is a good idea:

189What makes a function?

• First, you only write the code once. If you find a fault function you only have to fix
it once.

• Secondly, functions make a program easy to test. You can regard each function as a
“data processor.” Data goes into the function via the arguments, and output is produced
via the return value. We can write what is called a “test harness” to call a function with
test data and then check to ensure the output is sensible. In other words, we can make a
program that tests itself. Professional developers will create the test code alongside the
program code. Frameworks can be used to automate this testing process even more.
We’ll look at these in Chapter 12.

Local variables in Python functions
Imagine several cooks working together in a kitchen. Each cook is working on a dif-
ferent recipe. The kitchen contains a limited number of pots and pans for the cooks to
share. The cooks would need to coordinate so that two of them didn’t try to use the
same pot. Otherwise, we might get sugar added to our soup and custard instead of
gravy on our roast beef.

The designer of Python faced a similar problem when creating functions. He didn’t
want functions to fight over variables in the same way that two cooks might fight over
a particular frying pan. You might think that it would be unlikely that two functions
would try to use variables with the same name, but this is actually very likely.

Many programmers (including me) have an affection for the variable name i, which
they use for counting. If two functions use a variable called i and one function calls
the other function, this could lead to programs that don’t work properly because the
second function might change i to a value that the first function didn’t expect.

Python solves this problem by giving each function its own local variable space. This is the
programming equivalent of giving each cook their own personal set of pots and pans. Any
function can declare a local variable called i that is specific to that function call. When a
function returns, all local variables are destroyed. Variables declared outside functions are
called global variables because they are not tied to any particular function.

EG7-11 Local Variables

def func_2():

 i = 99

def func_1():

 i = 0

190 Chapter 7 Using functions to simplify programs

 func_2()

 print('The value of i is: ', i)

func_1()

The code above shows how this works. Both func_1 and func_2 use a variable
called i. When we run the program, it follows this sequence:

1. The function func_1 is called.

2. The first statement of func_1 creates a variable called i and sets it to 0.

3. The second statement of func_1 makes a call to func_2.

4. The first, and only, statement of func_2 creates a variable called i and sets it to 99.

5. The function func_2 finishes and control returns to the third statement of func_1.

6. The third statement of func_1 prints out the value of i.

The question we must consider is, “What value is printed?” Is it the value 0 (which is set
inside func_1) or is it 99 (which is set inside func_02)?

If you’ve read the first part of this section, you know the value that will be printed is 0.
The variables both have the same name (they are both called i), but they each “live” in
different functions. This form of isolation is called encapsulation. Encapsulation means
that the operation of one function is isolated from the operation of other functions.
Different programmers can work on different functions with no danger of problems
being caused by variable names clashing with each other.

Global variables in Python programs
Local variables are very useful, but sometimes a program contains data that needs to be
shared among all functions. For example, you might want to share a player name among
several functions that implement a game. Python allows functions to have access to
variables held at the global level. A global variable is declared outside any function.

EG7-12 Reading Global Variables

cheese = 99

def func():

 Create a global variable called cheese

191What makes a function?

 print('Global cheese is:', cheese)

func()

The example program above shows how a function can read the content of a variable
declared at a global level. This program runs perfectly and will print:

Global cheese is: 99

The message is printed from code running inside the func function. So, we can see
that it’s easy to read global data from within a function. We just need to use the vari-
able. Unfortunately, storing values is a bit more complicated.

EG7-13 Shadowing Global Variables

cheese = 99

def func():

 cheese = 100

 print('Local cheese is:', cheese)

func()

print('Global cheese is:', cheese)

You might think you understand the above code from looking at it. The program
contains a global variable called cheese. This variable is initially set to 99. The program
then calls the function func. A statement within the function sets the value of cheese
to 100. Then the function returns. You might expect the program to print out the fol-
lowing, because when the function runs it sets the value of cheese to 100.

Local cheese is: 100

Global cheese is: 100

However, this is not what happens. Instead, the program prints this:

Local cheese is: 100

Global cheese is: 99

 Read the global variable from within func

Call the function

 Create a global variable called cheese

 Create a local variable called cheese
 Print the cheese local variable

Call the function
Print the cheese global variable

192 Chapter 7 Using functions to simplify programs

Python creates a new local variable with the same name as a global variable. This is
called shadowing. The local shadow cheese variable is used in the function instead
of the global cheese variable. In effect, this program contains two variables called
cheese. One is global, and the other is local to the func function.

The shadowing behavior can lead to much confusion. Unless you know how it works,
you can lose many hours trying to work out why your variables are not updating. This
behavior is unfortunate because reading from a global variable in a function works
perfectly, but storing values in the global variable results in the creation of a shadow.

If you want a function to be able to access global variables, you can identify global
variables to be used inside the function.

EG7-14 Storing Global Variables

cheese=99

def func():

 global cheese

 cheese=100

 print('Global cheese is:',cheese)

func()

print('Global cheese is:',cheese)

The global statement is followed by the name of the global variable in which you
want to store a value. In the above program, there is only one variable called cheese,
and it is shared among all functions.

You might wonder why global variables work in this confusing manner. A function
can read a global variable but must use a special global statement if the function
wants to store values in the global variable. This is because the designer of the Python
language was anxious to avoid problems if a local variable in a function is accidentally
given the name of global variable. If the function was able to change a global vari-
able, other parts of the program would be affected by an unexpected change to the
global value.

Python forces the programmer to use a global statement to link a function to a global
variable so that global variables are only written to when the programmer explicitly
chooses to do so.

 Declare a global variable called cheese

Tell the function to use the global variable

193Build reusable functions

PROGRAMMER’S POINT

Use global data with care
Global data can be very useful. However, it can also be the source of hard-to-find problems
with your programs. If variables can be changed by many functions, a mistake in one function
could affect the proper operation of many others. If you do decide to use global variables, I
suggest that you use plenty of comments to clarify how the variables are being used.

Build reusable functions
Asking users for text input is a dangerous business. Users can break our programs by
typing the wrong thing, and they can stop our program completely by using the key-
board interrupt command Ctrl+C. Because many of our programs request user input,
it makes sense to create some Python functions that can manage the input process for
us. We can then use these functions in all our future programs.

Create a text input function
The first function we’ll create will read in a string of text from the user. We could
use the Python input function for this, but a user could enter the Ctrl+C key combina-
tion, which will raise an exception and stop the program. You’ve learned how to deal
with exceptions, so now we’ll put this behavior into a function. I’ll call the function
read_text. When we design a function, the first thing we decide on is the parameters
that the function accepts and the value it returns.

def read_text(prompt):

This definition indicates that the function has a single parameter called prompt.
A program could use the function as follows:

name = read_text(prompt='Please enter your name: ')

This would set the name variable to the result of the function call. The user of the pro-
gram would see the following:

Please enter your name: Rob

194 Chapter 7 Using functions to simplify programs

In this version of the function, the read_text function must be supplied with a
prompt string as the argument to the function. We could modify this code to allow
the function to be used without a prompt:

def read_text(prompt='Please enter some text: '):

Now a program can use read_text without supplying an argument:

name=read_text()

When read_text runs, the prompt parameter is now set to the default value:

Please enter some text: Rob

You can have an interesting discussion about whether the function should provide a
default prompt. It’s sensible for the function to always require a prompt because the
prompt forces the programmer using the function to provide a sensible message for
the user. Now that we’ve defined how the function should be used, we can go ahead
and add the code that will make it work:

 1. def read_text(prompt):

 2. while True: # repeat forever

 3. try:

 4. result=input(prompt) # read the input

 5. # if we get here, no exception was raised

 6. # break out of the loop

 7. break

 8. except KeyboardInterrupt:

 9. # if we get here, the user pressed Ctrl+C

10. print('Please enter text')

11. return result

This function will read a line of text from the user and ignore any keyboard interrupts.

Investigating the read_text function
Let’s look at the read_text function and how it works.

Question: What is the result variable used to accomplish?

Answer: The result variable holds the text that the function will return to the caller. It is
a local variable. It exists only inside the read_text function.

Question: What stops the function from repeating continuously?

Answer: Line 7 contains a break that will end the loop and cause the program to continue
running at the statement after the loop, which returns the text in the result variable.

Question: Why does the text reading loop repeat after the exception has been dealt with?

Answer: A while construction will repeat all statements in the suite of code that it
controls. In the read_text function, the indented text underneath the start of the while
is repeated. The return statement is the first non-indented statement under the while.
So, Python will go back to the top of the loop when it finds the first statement that is not
part of that loop. When the loop ends, the return is performed and the function ends.

CODE ANALYSIS

Add help information to functions
You’ve learned how to add comments to Python programs that explain how the code
works. Python also has a commenting convention for functions we create. The first
statement in a Python function can be a Python string describing what the function
does. These strings can be picked up by programs that read Python source code and
produce documentation.

def read_text(prompt):

 'Displays a prompt and reads in a string of text'

This is a single-line string that provides descriptive information about the function.
If you want to provide more detail, the program can contain a multi-line string doing
just that:

def read_text(prompt):

 '''

 Displays a prompt and reads in a string of text.

 Keyboard interrupts (Ctrl+C) are ignored

195Build reusable functions

196 Chapter 7 Using functions to simplify programs

 returns a string containing the string input by the user

 '''

In a Python program, we can create a string of text that spans several statements by
using triple quotes to mark the start and the end of the string (see Chapter 3 to learn
more). The description string above is the kind of thing I’d write for one of my func-
tions. It describes broadly what the function does, mentions “interesting” behaviors,
and tells the reader what the function returns.

Use pydoc
We can use the pydoc library to search for the descriptive strings for a specific func-
tion in a program:

>>> import pydoc

>>> pydoc.help(read_text)

Help on function read_text in module __main__:

read_text(prompt)

 Displays a prompt and reads in a string of text.

 Keyboard interrupts (Ctrl+C) are ignored

 returns a string containing the string input by the user

Above, you can see how we can use the pydoc library. After importing the library,
we can use the pydoc.help function to display the help information for a particular
function (in this case, the read_text function). We can also use pydoc to get help
on built-in functions. We will use pydoc in Chapter 12 to produce documents that
describe our programs.

>>> pydoc.help(print)

Help on built-in function print in module builtins:

print(...)

 print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

 Prints the values to a stream, or to sys.stdout by default.

 Optional keyword arguments:

 file: a file-like object (stream); defaults to the current sys.stdout.

 sep: string inserted between values, default a space.

 end: string appended after the last value, default a newline.

 flush: whether to forcibly flush the stream.

197Build reusable functions

PROGRAMMER’S POINT

Form a habit of documenting your code
In the old days, a programmer would have to write a large document that describes how their
program works and all its internal behaviors. These days, the documentation is actually made
part of the program text. Make sure when you write a function that you add the documenta-
tion text. You’ll be surprised just how quickly you can forget how a program works.

Create a number input function
Now that we have a function that can read a string of text, we can use this to make
a function that will read in a number from the user. The number input function will
reject input that does not contain digits. The number input function will deal with any
exceptions that might be raised when the user input is converted into a number.

def read_float(prompt):

 '''

 Displays a prompt and reads in a number.

 Keyboard interrupts (Ctrl+C) are ignored

 Invalid numbers are rejected

 returns a float containing the value input by the user

 '''

 while True: # repeat forever

 try:

 number_text = read_text(prompt)

 result = float(number_text) # read the input

 # if we get here, no exception was raised

 # break out of the loop

 break

 except ValueError:

 # if we get here, the user entered an invalid number

 print('Please enter a number')

 # return the result

 return result

The function read_float reads a string of text and tries to convert it into a float-
ing-point value. It would be used as follows.

age=read_float('Please enter your age: ')

198 Chapter 7 Using functions to simplify programs

If the conversion process throws an exception, the read loop is repeated. Notice that
this function looks remarkably like the read_text function. This shouldn’t be too
much of a surprise, because the problem the functions are solving (they keep trying
to do something until it works) is the same for both. Programmers call these kinds of
things “patterns.” We’ll see this pattern in action when we create the next function,
which will read a number in and reject values that are out of the given range.

def read_float_ranged(prompt, min_value, max_value):

 '''

 Displays a prompt and reads in a number.

 min_value gives the inclusive minimum value

 max_value gives the inclusive maximum value

 Keyboard interrupts (Ctrl+C) are ignored

 Invalid numbers are rejected

 returns a float containing the value input by the user

 '''

 while True: # repeat forever

 result = read_float(prompt)

 if result < min_value:

 # Value entered is too low

 print('That number is too low')

 print('Minimum value is:', min_value)

 # Repeat the number reading loop

 continue

 if result > max_value:

 # Value entered is too high

 print('That number is too high')

 print('Maximum value is:', max_value)

 # Repeat the number reading loop

 continue

 # If we get here, the number is valid

 # break out of the loop

 break

 # return the result

 return result

The read_float_ranged function is used as follows:

age=read_float_ranged('Please enter your age: ', min_value=5, max_value=90)

Note that I’ve used keyword arguments to make the meaning of the parameters clear.

Use the read_float method we have already written

Investigating the read_float_ranged function
The read_float_ranged function uses the same pattern as the earlier functions, but it is
worth taking a closer look at some parts of it.

Question: Why doesn’t this function have any code in it to catch exceptions?

Answer: There is no need for this function to catch exceptions. If the user tries to break
the program by using Ctrl+C, the exception raised will be caught by the read_text
function, which is called by the read_float function. And the read_float function will
catch any exceptions raised if the user types in text that is not part of a number.

Question: Will chaining these functions together slow down the program?

Answer: We’ve built up our library from a low-level function (fetch some text) all the
way up to a high-level function (fetch a numeric value in a particular range). You could
write a “free standing” read_float_ranged function that didn’t make use of any other
functions. This would probably run slightly faster because it wouldn’t spend as much time
assembling function calls. However, I prefer my version because I think it’s much easier to
understand and maintain.

Question: What would happen if a programmer reversed the maximum and minimum values?

age=read_float_ranged('Enter your age:', min_value=90, max_value=5)

Answer: This is a serious error. We’re asking read_float_ranged to deliver a number
greater than 90 and less than 5. No such number exists. The program would never com-
plete the read_float_ranged function because every value that was entered would be
rejected. This would be very upsetting for the user of the program.

Because we’re using keyword arguments, it’s much harder to make this mistake, but it’s
still possible. You could take the view that a programmer making this mistake deserves
the bad things that will happen to their program, but you should at least let program-
mers know that your function doesn’t detect this error. You can do this by adding a note
to the description string for the method.

>>> pydoc.help(read_float_ranged)

Help on function read_float_ranged in module __main__:

read_float_ranged(prompt, min_value, max_value)

 Displays a prompt and reads in a number.

 min_value gives the inclusive minimum value

 max_value gives the inclusive maximum value

CODE ANALYSIS

199Build reusable functions

 ** Does not detect if max and min are reversed **

 Keyboard interrupts (Ctrl+C) are ignored

 Invalid numbers are rejected

 returns a float containing the value input by the user

With a bit of luck, other programmers will notice that the function doesn’t detect if max
and min are reversed, and they’ll use read_float_ranged correctly. Otherwise, they’ll
find that their number validation will repeatedly reject values. If we wanted to go one
better, we could add a test to the function that detects when the max and the min values
are reversed:

if min_value > max_value:

 # If we get here, the min and the max

 # are reversed

If a programmer inadvertently swaps the min and max values, simply returning them to
the correct order would be a very bad thing to do. This is a bad idea because we should
not assume that we know the kind of mistake the programmer has made. We are assum-
ing that they reversed the values. However, it is equally likely that the mistake could arise
as a simple typing error.

age = read_float_ranged('Enter your age:',min_value=5,max_value=.90)

In the above code, the programmer has accidentally pressed the period (decimal point)
key when typing the maximum age. If the program simply swapped the min and max val-
ues, the number validation would now take place in the range between 0.9 and 5, which
is wrong. The best thing the function should do in this situation is raise an exception.

if min_value > max_value:

 # If we get here, the min and the max

 # are the wrong way around

 raise Exception('Min value is greater than max value')

Raising an exception ensures that the program will fail and that the error will be brought
to the attention of the programmer. This is much better than the function guessing what
the mistake might be and then trying to fix it. If a function throws exceptions in this way, I
consider it good manners to add details in the documentation for the function.

200 Chapter 7 Using functions to simplify programs

201Build reusable functions

Convert our functions into a
Python module
Currently, the functions we’ve used have been defined at the start of the program file
where we want to use them. However, for the number reading functions that we just
created, it would be wonderful if we could use them in every program that we write
from now on. It turns out that in Python this is a very easy thing to do. We can create
a module. A module is a program file that contains some Python code that we want to
use in many different programs. Some program languages call such a thing a library,
but in Python the proper term is module.

To make a module, we just must put the function code into a Python source file, and
then we can import the functions in that file into any program. The only thing we must
remember is that the module file and the program file that is using the module must
be located in the same folder. In Chapter 12 we will learn more about how to create
folders that contain Python modules.

I put the functions in a source file called BTCInput.py. At the start of any program that
wants to use these functions, I just need to import the functions from this file:

import BTCInput

We can call functions from this module in the same way as we have called functions
from other modules.

age = BTCInput.read_float_ranged('Enter your age:', min_value=5, max_value=90)

Python has an alternative import mechanism that might make our programs slightly
simpler. We can import functions so that we can use them directly.

from BTCInput import read_float_ranged

age = read_float_ranged('Enter your age:', min_value=5, max_value=90)

Once a function has been explicitly imported using the from…import construction, it
can be used without the module name in front of it. If you want to explicitly import all
the functions from a module, you can use the * character as a wildcard that will match
all the function names in the module.

from BTCInput import *

age = read_float_ranged('Enter your age:', min_value=5, max_value=90)

202 Chapter 7 Using functions to simplify programs

This form of importing makes the functions from a module easier to use, but it does
raise the prospect of names clashing. If two modules contain a function with the same
name, you’ll find that one of the functions will be overwritten by the other if you
import both functions using the * wildcard. To understand why you might encounter
problems, it’s worth considering what happens when you import a module.

We know that Python defines functions as a program executes. When the Python engine
encounters a statement starting with the word def, the engine stops executing statements
and instead starts to build a function that is stored for use later in the program.

When a Python program contains an import statement, the Python engine reads the
contents of the imported file. The Python engine obeys any Python statements in
the imported file and builds any functions defined in this file. If you create a second
version of something in Python, the original version is replaced. If two files define the
same function, the definition in the second file that is read will replace the first defini-
tion. Of course, this might lead to strange behavior in your programs.

Add number input to all your programs
You can find the number input functions in the module file BTCInput.py in the sample programs
for this chapter. The BTCInput.py file also contains functions that can be used to read integer
values. The sample program EG7-15 Using the input module shows how these functions are
used. You can add these number-reading routines in all the programs we’ve written so far.

MAKE SOMETHING HAPPEN

Use the IDLE debugger
We can check our programs by working through them by hand, but we can also use
IDLE to view the actions of a program as it runs. We use the IDLE debugger to do this.
As the name implies, a debugger is a tool that helps you remove bugs from your
programs. You can use a debugger to determine the path your program is following,
rather than the path you think it is following. You can also use the IDLE debugger to
discover how Python constructions work.

We’ll start by adding a breakpoint to our program. A breakpoint doesn’t cause the
program to break; rather, it causes the program to “take a break.” When a program
reaches a statement designated as a breakpoint, the program is paused, the Python
engine hands control back to the programmer, and then the programmer can verify
that each variable has the necessary contents. A program can contain many break-
points; the first breakpoint that the program reaches will pause the program.

Investigate programs with the debugger
I’ve written a little program we can investigate using the debugger. Open the file EG7-16
Investigating the debugger. You’ll find the code in the downloadable samples for this
chapter. Open this sample program using the IDLE editor.

We’ll put a breakpoint on the statement that sets the value of x to 99. Right-click on a charac-
ter in this statement to open the context menu.

Selecting Set Breakpoint highlights the line containing the breakpoint.

MAKE SOMETHING HAPPEN

203Build reusable functions

If you inadvertently highlight the wrong statement, don’t worry. You can set a breakpoint on
the correct statement and use the Clear Breakpoint option to remove the breakpoint from
the wrong statement.

The Python Shell in IDLE only responds to breakpoints when it’s in Debug mode. Next, enable
Debug mode in the shell by selecting Debug>Debugger.

When you turn on the debugger, you’ll notice two things happen. First, the shell will display a
message to indicate that debugging is enabled.

Second, the Debug Control window opens.

204 Chapter 7 Using functions to simplify programs

The Debug Control window contains buttons you can use to start and stop your program,
along with a display area where you can view the contents of the variables in your program.

This window is active only when a program is being debugged. To start a debugging session,
go back to your program file and start the program using the Run>Run Module menu
option or by pressing F5. The Debug Control window now comes to life.

You can think of the Debug Control window as a “dashboard” for your running program. At
the top are controls, in the middle is a display that shows the current position that’s been
reached in the program, and at the bottom is a view of the program variables. The high-
lighted line shows that the program is at the very beginning, which is the def statement that
defines increment_function, as shown below.

Note that the program control buttons in the top left corner of the window—Go, Step, Over,
Out, Quit—are now enabled, so we can use them to control how the program runs.

205Build reusable functions

Start the program by pressing Go, which causes the program to run until it hits a breakpoint.
We put the breakpoint on the assignment x = 99. If you look in the display in the center of
the Debug Control window, you can see that this statement has been reached.

We can press the Step button to move the program to the next statement that will be
executed. The display in the center of the Debug Control window will update to show
you this statement:

It would be useful to see the statement in the source code. If you turn on the Source check
box in the Debug Control window, you can see the running Python code.

If you select the Source check box as shown above, the Python debugger will find and high-
light the file containing the currently active Python statement.

The Debug Control window also displays the values in variables. If you look at the bottom of
the window, you’ll see that the value of x is now displayed.

206 Chapter 7 Using functions to simplify programs

You can continue pressing the Step button and watch the program move into
increment_function. If you press Step four more times, you’ll see the program return
from increment_function and call the print function, which is the last statement in the
program. The print function is part of Python. The debugger will open the file that contains
this code and show it to you.

207Build reusable functions

This part of the system is about to print the output from our program. It’s pleasing to find
that we can recognize the statements, but we don’t really want to read this code just now.
The Out button in the Debug Control window is used to tell the debugger to complete the
currently active function and return from it. Press the Out button to complete the print
action and end the program.

If you want to just step over a function call without going inside it (which is usually the case
with functions such as print and input), you can use the Over button to step over these calls.

You might find it fun to add more breakpoints in the program and run it. You can also use the
debugger to run any of your earlier programs and look at the path your programs follow.

208 Chapter 7 Using functions to simplify programs

What you have learned
In this chapter, you learned how to take a block of code and turn it into a function that
can be used from other parts of the program. You’ve seen that a function contains
a header, which describes the function, and a block of code that is the body of the
function. The function header supplies the name of the function and any parameters
that are accepted by the function. When a function is called, the programmer supplies
an argument that matches each parameter.

Parameters are items that the function can work on. They are passed by value, in
that a copy is made of the argument given in the function call. If the function body
contains statements that change the value of the parameter, this change is local to the
function body. Parameters can be given “default” values that are used in the function
call if a matching argument is not supplied. In the call of the function, programmers
can add keywords that directly map values to parameters in the function.

A function can return a single value. This is achieved by using the return statement,
which can be followed by a value to be returned. If no value is returned, or the func-
tion does not obey a return statement, the function will return a special Python value
called None, which is used to denote a missing value.

Variables created inside the body of a function are local to the function and cannot
be used by statements outside that function. Variables declared outside any function
are called global variables. Functions can read values from global variables but must
explicitly use the global statement to identify global variables to which they want to
write. If a function writes to a local variable with the same name as a global variable,
the global variable is said to be “shadowed” and cannot be used by the function. The
reason for this complication is to make it less likely that matching global and local
variables will not cause a program to fail.

209What you have learned

A function can contain a string as the first statement in the function. This string should
provide documentation for the function, explaining what it does, what inputs it has,
and what value, if any, it returns.

Functions can be made available to Python programs by placing them in a Python
source file, which is then imported into the program.

Here are some questions that you might like to ponder about the use of functions
in programs:

Does using functions in programs slow down the program?

Not normally. There is a certain amount of work required to create the call of a func-
tion and then return from it, but this is not normally an issue. The benefits of functions
far outweigh the performance issues.

Can I use functions to spread work around a group of programmers?

Indeed, you can. This is a very good reason to use functions. There are several ways
that you can use functions to spread work around. One popular way is to write place-
holder functions and build the application from them. A function will have the correct
parameters and return value, but the body will do very little. As the program develops,
programmers fill in and test each function in turn.

How do I come up with names for my functions?

The best functions have names given in a verb-noun form. read_string is a good
name for a function. The first part indicates what it does, and the second part indi-
cates what it delivers. I find that thinking of function names (and variable names, for
that matter) can be quite hard at times.

Can functions in libraries use global variables?

We’ve seen that a function in a Python source file can access “global” variables
declared in that file. A global variable is one that is not declared inside a function. A
Python library file can contain global variables that can be used inside that library, but
global variables declared in one Python source file cannot be used in another. In other
words, if a program contains a global variable called “status,” this variable would not
be useable in any libraries that are imported by this program.

Should I put all my functions in modules/libraries?

Libraries are very useful, but you probably shouldn’t put all your functions in module
files. It’s fine for utility functions such as read_text to be placed in a library. However,
when you start creating functions for use in a particular application, you might find it
works better if you define such functions in the files where they are used, particularly
if you want to use global variables to share values between functions.

8
Storing collections

of data

212 Chapter 8 Storing collections of data

Lists and tracking sales
Let’s say the owner of a group of ice-cream stands asks that you write a program to
help her track sales results. She has ten ice-cream stands around the city, each selling
a variety of ice-cream treats. She wants to enter the sales value from each stand and
then view the data in different ways:

 ● Sorted from lowest to the highest

 ● Sorted from highest to the lowest

 ● Showing just the highest and the lowest numbers

 ● Showing the total number of sales

 ● Showing the average sales value

She can use this information to help plan the location of her stands and reward the
best sellers. If you get this right, you might be getting some free ice cream, so you
agree to help.

PROGRAMMER’S POINT

Getting the specification right: Storyboarding
It’s important to agree on a specification with your customers. There are many ways that
you can develop a specification. I find that the best way is to sit down with your user and a
large pad of paper—as far away from the computer as you can get—and draw up a “story-
board.” Storyboards are used in moviemaking to show everyone how the film will tell the
story. Programs can have storyboards, too.

Whereas a movie storyboard describes one sequence—the narrative of the film—the
storyboard for a computer program has branches that show how the user follows differ-
ent paths through the application. The ice-cream sales tracker will contain a menu from
which the user will select how they want to view the data (lowest to highest sales, highest
to lowest sales, and so on). You would need to create a separate storyboard for each of the
actions that the user can select.

In a storyboard, you can also draw up how the program will work and how the user will
move from window to window within the program. You could even decide what color
scheme to use. If the user says he’s not worried about how the program will work and that
he will leave that to you, you need to know that the user most certainly will be worried

213Lists and tracking sales

about how the program will work once you’ve created it. Work directly with the customer
to design the program to ensure that you deliver exactly what’s required. Storyboards show
you exactly what needs to happen so that you write the program accordingly. If there’s
anything that the customer hasn’t thought of, it will most likely be spotted as you build the
storyboard. Building an understanding of how programs fit together can be a tremendous
help when you get to the point of creating them. This activity is frequently called “paper
prototyping” or “wireframing” a program design.

With the information you’ve gathered, all you need to do now is write the actual pro-
gram itself. This example program will do the following:

 ● It will use variables to hold the sales values entered by the user.

 ● The program can use logical expressions to compare two sales values and choose
the larger of the two (so that it can sort values and find the largest sales).

 ● The program will use print statements to display results to the user and the newly
created BTCInput functions from Chapter 7 to read in the data.

 ● Each feature of the program will be performed by a function that will work on
global data stored in the program and shared among the functions.

You have decided that the program will have the following user interface:

Ice-Cream Sales

1: Print the sales

2: Sort Low to High

3: Sort High to Low

4: Highest and Lowest

5: Total Sales

6: Average sales

7: Enter Figures

Enter your command: 3

The program will start by storing the sales figures. Next, the user can select the
viewing option by entering the number for the command she wants to perform. If this
looks somewhat familiar, it should, because it’s very similar to how we created the ride
selector for the theme park (see Chapter 5).

Print the menu

 Read the user command

214 Chapter 8 Storing collections of data

Limitations of individual variables
Now that we’ve decided how the program will be used, we need to build the code that
provides the behaviors that the user wants. The first thing the program should do is
read in sales figures from the user, so let’s start there.

This program needs to store 10 sales figures, so we could use 10 variables one for each of
the values you want to store in the program. We can use the number reading functions
that we created at the end of the previous chapter. I’ve created a library of input func-
tions based on these functions. The library is in the file BTCInput, which is imported at
the start of the program. The read_int method reads an integer from the user.

from BTCInput import *

sales1=read_int('Enter the sales for stand 1: ')

sales2=read_int('Enter the sales for stand 2: ')

sales3=read_int('Enter the sales for stand 3: ')

sales4=read_int('Enter the sales for stand 4: ')

sales5=read_int('Enter the sales for stand 5: ')

sales6=read_int('Enter the sales for stand 6: ')

sales7=read_int('Enter the sales for stand 7: ')

sales8=read_int('Enter the sales for stand 8: ')

sales9=read_int('Enter the sales for stand 9: ')

sales10=read_int('Enter the sales for stand 10: ')

Now that we have the data in our program, we can start to work with it. First, we could
create an if condition to decide whether the sales from stand 1 are the largest. You
saw in Chapter 5 how to combine conditions to make complicated logical expressions.
The output from the following condition is true only if sales1 is larger than all the
other sales values. Note that a Python statement can be continued onto another line
by use of the backslash (\) character at the end of the line of the statement you want
to continue.

EG8-01 Finding the largest sales

if sales1>sales2 and sales1>sales3 and sales1>sales4 \

 and sales1>sales5 and sales1>sales6 and sales1>sales7 \

 and sales1>sales8 and sales1>sales9 and sales1>sales10:

 print('Stand 1 had the best sales')

This statement works fine, the problem is (as you might have already spotted) that this
program would have to repeat this condition 10 times to display the correct message for

Import the number
reading functions

Read in the first value
Read in the second value

Creating a list
We can use the Python Shell to investigate how a list is created. Open the IDLE command
shell and enter the statement below. This statement creates an empty list called sales. The
brackets in this statement are very important. Don’t use braces {} or parentheses (). A list
contains a collection of items held in order.

>>> sales=[]

Once you’ve created a list, you can append items to the end of the list.

>>> sales.append(99)

The above statement would create an item containing the integer value 99 and append it to the
list called sales. List variables contain a method called append that can be called to add an item
to the end of the list. If the list is empty (as ours was), then the new value of 99 becomes the first
item in the list. We can append another item to the list by using append again.

>>> sales.append(100)

MAKE SOMETHING HAPPEN

215Lists and tracking sales

every possible stand with the best sales. The problem would become worse if your cus-
tomer added another 20 sales stands, because the program would become even more
complex, requiring 20 more variables, 20 more read statements, and 20 more complex
conditions. That’s not the path we want to follow to manage this volume of data.

Lists in Python
Storing and working with large amounts of data is actually quite easy, but you need
something better than single variables. You need to create a collection, and the sim-
plest form of a collection is the Python list, so let’s look at that.

A list is exactly what you might expect: a list of items. When I go shopping, I try to make
a list before I head out to the store. When I have a bunch of things that I need to do, I
like to create a to-do list. (Then I usually throw it away or lose it, but at least I tried.)

In the case of the sales program, I want to create an empty list and then add the sales
values to the list as the values are read in.

We now have a list that contains two items. We can view the contents of the list just by giving
the name of the list to the Python Shell.

>>> sales

[99, 100]

We could add as many items as we like to the list by making further calls to the append
method. The next thing we need to do is determine how to access the individual items in
the list.

To do this, we use a process called indexing. We can use an index value to identify a specific
item in the list. The item at the beginning of the list has the index value of 0, which can be
confusing because humans don’t number things starting with zero. You wouldn’t say, “I’ll
have the zeroth item on the menu” or “I live at house number zero at the top of the street.”
Humans naturally link the first item in a list with the number 1. You might find it best to think
of the index as the distance down the list that you must travel to get to the item you want.

To access the item in the list, you provide the index value enclosed in square brackets.

>>> sales[0]

99

This statement displays the item at the start of the list. We can use indexes to allow us to
change the contents of an item in a list.

>>> sales[1]=101

This statement will change the contents of the item at the end of the list (remember that
there are only two items in this list). If we view the list, we’ll see the effect of the change.

>>> sales

[99, 101]

If a program tries to index an item not present in the list, Python will produce an exception.
For example, try finding the item with an index of 2.

>>> sales[2]

216 Chapter 8 Storing collections of data

There are two items in the list we know have the index values 0 and 1. There is no item with
the index value of 2, so Python complains.

Traceback (most recent call last):

 File "<pyshell#57>", line 1, in <module>

 sales[2]

IndexError: list index out of range

A list contains a collection of items. These items might all be the same type (our sales list
really should contain integer values), but Python does not insist on this. Try adding a string to
the end of the sales list.

>>> sales.append('Rob')

The statement above would work perfectly well. The first two items of sales are numbers,
and the last one is a string. We can also replace items in the list with items of a completely
different type at any time.

>>> sales[0]='Python'

This replaces the integer value of 99 at the start of the list with a string containing the word,
“Python.”

>>> sales

['Python', 101, 'Rob']

Note that just because you can create lists that contain lots of different types of data, I sug-
gest that you don’t do this. The sales figure application we’re making will rely on all the items
in the sales list being numeric values. The application will crash if any items are strings of text.
Just because Python lets you do something doesn’t mean that you should do it.

217Lists and tracking sales

A list-reading loop
There are a few questions we might like to consider about this code.

Question: What is the purpose of the count variable?

Answer: The for loop sets the count variable to each value in the range. The count is
used to produce the number prompt for the user so that the prompt for number input
starts with “Enter the sales for stand 1” and then counts upward from there.

Question: Why does the range of the count value go from 1 to 11 when we only want to
read in 10 values?

Answer: In Python, the upper limit of a range is exclusive. The loop will stop when the
value of the counter reaches or exceeds the limit.

Question: Which item in the list would hold the sales for stand number 1?

Answer: The sales for stand number 1 would be held in the first item, which would be the
one with the index of zero.

CODE ANALYSIS

218 Chapter 8 Storing collections of data

Read in a list
Now that we know how to use a list, we could write some code to read in the list values.
The best way to do this would be to create a loop that repeatedly reads the values.

EG8-02 Read and Display

from BTCInput import *

sales = []

for count in range(1,11):

 prompt = 'Enter the sales for stand ' + str(count) + ': '

 sales.append(read_int(prompt))

print(sales)

This code will read in 10 sales values and store them in a list called sales. It uses a for
loop that counts from 1 to 10. Each time around the loop, a prompt string is assembled
and used in a call to read_int, which returns a value to be appended to the sales list.

Import the number
reading functions

Create the sales list

For each stand numbered 1 to 10
Build the prompt string
Read in the sales value

for that stand

Print out the sales list

Question: What would I have to change in the program if I wanted to read in sales values
from 100 stands?

Answer: The answer to this question illustrates just how useful loops and lists are. You
would only need to change the upper limit of the range from 11 (for 10 numbers) to 101
(for 100 numbers).

for count in range(1, 101):

 prompt = 'Enter the sales for stand ' + str(count) + ': '

 sales.append(read_int(prompt))

This version of the read code would read in and store the sales figures for 100 stands. You
can make it work for any number of stands simply by changing 100 to a different value.
You could even ask the user how many ice-cream stands she owns:

no_of_stands = read_int('Enter the number of stands: ')

for count in range(1, no_of_stands+1):

 prompt='Enter the sales for stand ' + str(count) + ': '

 sales.append(read_int(prompt))

Note that we must add 1 to the number of stands entered by the customer because the
values produced by a range do not include the upper limit value.

It’s great to provide this kind of flexibility, but you need to be careful for two reasons.
First, the user might not want that flexibility. Suppose she has always had 10 stands and
doesn’t like having to type in a number she knows will never change. Second, every new
feature you add brings the potential for new errors. You need to consider what your pro-
gram should do if the customer tries to store the sales details of 1,000,000 stands.

Question: If I got one sales value wrong, would it be possible to edit the list to put in a
corrected version?

Answer: We’d have to write the Python code to do this, but in principle a program can
replace any item in the list with a new value without needing to change any other items.

Display a list using a for loop
In Python, the action of a for loop is to work through a number of items. We’ve seen
that a loop can work through the items in a range; a loop can also work through the
characters in a string. We can also use a for loop to work through the items in a list.

219Lists and tracking sales

220 Chapter 8 Storing collections of data

EG8-03 Read and Display loop

#fetch the input functions

from BTCInput import *

#create an empty sales list

sales = []

read in 10 sales figures

for count in range(1, 11):

 # assemble a prompt string

 prompt='Enter the sales for stand ' + str(count) + ': '

 # read a value and append it to sales list

 sales.append(read_int(prompt))

print a heading

print('Sales figures')

initialize the stand counter

count = 1

work through the sales figures and print them

for sales_value in sales:

 # print an item

 print('Sales for stand', count,'are',sales_value)

 # advance the stand counter

 count = count + 1

This complete program reads in 10 sales values and then prints them out in the order
they were entered by working through the sales list. You can use this pattern every
time you want to read some data in and display it.

Enter the sales for stand 1: 50

Enter the sales for stand 2: 54

Enter the sales for stand 3: 29

Enter the sales for stand 4: 33

Enter the sales for stand 5: 22

Enter the sales for stand 6: 100

Enter the sales for stand 7: 45

Enter the sales for stand 8: 54

Enter the sales for stand 9: 89

Enter the sales for stand 10: 75

Sales figures

Sales for stand 1 are 50

221Refactor programs into functions

Sales for stand 2 are 54

Sales for stand 3 are 29

Sales for stand 4 are 33

Sales for stand 5 are 22

Sales for stand 6 are 100

Sales for stand 7 are 45

Sales for stand 8 are 54

Sales for stand 9 are 89

Sales for stand 10 are 75

Read the names of guests for a party
Lists can hold any type of data that you need to store, including strings. You could change
the ice-cream sales program to read and store the names of guests for a party or an event
you’re planning.

Make a modified version of the sales program that reads in some guest names and then
displays them. Make your program handle between 5 and 15 guests.

MAKE SOMETHING HAPPEN

Refactor programs into
functions
Currently, our program is just a long sequence of statements. The first set of state-
ments reads in the data into a list, and the second set of statements prints out the
data. However, this might not be the best way to arrange the code. There might be
situations in which we want to read in a second set of data, and we will probably want
to print out the sales list more than once. With this in mind, we can take the program
above and refactor it so that these two activities are performed by functions.

Refactoring a program is the process of taking the code and changing how the com-
ponents fit together. We must refactor programs because it’s often quite difficult to
decide on the best way to do something until you start doing it. Usually, I get about
half way through writing a program before I discover how it really should be struc-
tured and then must make some adjustments. I’ve noticed that I end up doing this

222 Chapter 8 Storing collections of data

no matter how much time I spend planning before I write the program. Now, this might
just be me, but many other programmers have told me that they have similar expe-
riences. Note that refactoring doesn’t mean that I must tear up all my code and start
again; instead, it means that I must rearrange the components to better reflect the
problem I’m solving.

It turns out that changing the ice-cream program so that it uses functions is not very
difficult. The IDLE editor can even indent the function code for me if I use the Format,
Indent Region command.

EG8-04 Functions

#fetch the input functions

from BTCInput import *

#sales list used by the program

sales=[]

def read_sales(no_of_sales):

 '''

 Reads in the sales values and stores them in

 the sales list.

 no_of_sales gives the number of sales values to store

 '''

 # remove all the previous sales values

 sales.clear()

 # read in sales figures

 for count in range(1, no_of_sales+1):

 # assemble a prompt string

 prompt = 'Enter the sales for stand ' + str(count) + ': '

 # read a value and append it to sales list

 sales.append(read_int(prompt))

def print_sales():

 '''

 Prints the sales figures on the screen with

 a heading. Each figure is numbered in sequence

 '''

 # print a heading

 print('Sales figures')

 # initialize the stand counter

 count = 1

 sales[0] = 99

Function to be used to read the sales

Empty the sales list to remove old values

Function to print the sales values

Functions in the sales analysis program
The program now consists of two functions, one called read_sales and one called
print_sales.

Question: What does the parameter for the read_sales function do?

Answer: In the future, we might need to change the number of ice-cream stands that
the program supports. To make the change as easy as possible, the read_sales function
accepts a parameter that sets the number of sales values that it will read.

Question: What does clear do?

Answer: When we read a new set of values, we must make sure that any old values are
discarded. A list provides a clear behavior that can be used to clear out all existing values.

Question: Why don’t we need to tell the print_sales function how many sales figures to print?

Answer: The for loop in the print_sales function will work through all the items of the
list and doesn’t need to be told how many items are included.

Question: Why wasn’t the sales list made global in the read_sales function? I thought
functions must specifically identify global variables to be modified. The read_sales function
appends items to the sales list, which looks to me like a change to the value of sales. Why
does this work?

Answer: This is a very good question. To understand the answer, you must consider what
Python variables do. Items stored in a Python program are objects that are referred to by
references. When we create a named variable, we actually create an object and a named
reference that refers to it.

age = 6

happy = True

CODE ANALYSIS

223Refactor programs into functions

 # work through the sales figures

 for sales_value in sales:

 # print an item

 print('Sales for stand', count, 'are', sales_value)

 # advance the stand counter

 count = count + 1

#Program runs here

read_sales(10)

print_sales()

First statement of program. Read 10 sales
Second statement of program. Display the results

The Python statement above would create two objects. One is an object that can hold an
integer value; the other is an object that can hold a Boolean value. The age reference is
attached to the integer, and the happy reference is attached to the Boolean value.

age = 7

When Python performs the above statement, the age reference is now attached to an inte-
ger object that holds the value 7. When talking about some programming languages, you
could say, “The box called age now has the value 7 in it.” However, in Python, it’s best not to
think of it this way. In Python, you should say, “The age reference is now attached to a box
that holds the value 7.” Assignments just change a reference to refer to a different object.

sales=[]

The Python statement above makes a reference called sales and attaches it to an empty
list. If a program makes a change to the sales list—which it can do by using things like
append—the object to which the sales reference is attached doesn’t change; instead the
contents of that object are changed.

sales.append(99)

This statement would add the value 99 onto the end of the sales list. However, this state-
ment would not cause the sales reference to become attached to a different object.

If this discussion has your head spinning a bit, don’t worry. We’ll return to this theme in
later chapters when we start designing objects we’ve created.

224 Chapter 8 Storing collections of data

Create placeholder functions
During the development process, we can create “placeholder” functions for the
behaviors we want in our programs. These are sometimes called stub functions
because they need to be filled out into completed functions at a later date. When I
wrote this book, I started with a set of headings for the things I wanted to write about,
and then filled in each heading later. Stub functions are used in a similar way.

def sort_high_to_low():

 '''

 Print out a list of the sales figures sorted high to low

 '''

 pass

Placeholder for sort high to low

pass is a Python placeholder statement

225Refactor programs into functions

def sort_low_to_high():

 '''

 Print out a list of the sales figures sorted low to high

 '''

 pass

These are placeholders for two of the functions we will implement. Each of them just
contains the function description (a string that is provided as the first statement in
the function to explain what it does) and a new Python keyword that we’ve not seen
before. The keyword is pass.

You can think of the pass keyword as a placeholder statement. We can use it any-
where that Python is expecting a statement. The pass statement doesn’t actually do
anything when the program runs. In this case, we will go back and fill in the function
later.

Create a user menu
At the beginning of development, we agreed with the customer on the design of the
user menu of the program. This method will print this menu and then allow the selec-
tion of the desired function.

EG8-05 Functions and Menu

menu='''Ice-cream Sales

1: Print the Sales

2: Sort High to Low

3: Sort Low to High

4: Highest and Lowest

5: Total Sales

6: Average Sales

7: Enter Figures

Enter your command: '''

command=read_int_ranged(menu,1,7)

if command==1:

 print_sales()

else:

Placeholder for sort low to high

pass is a Python placeholder statement

Create the menu string

Read in the command number
Test for command 1

226 Chapter 8 Storing collections of data

 if command==2:

 sort_high_to_low()

 else:

 if command==3:

 sort_low_to_high()

 else:

 if command==4:

 highest_and_lowest()

 else:

 if command==5:

 total_sales()

 else:

 if command==6:

 average_sales()

 else:

 if command==7:

 read_sales()

This code creates a menu string and then reads in a command number from the user. The
command value is an integer in the range 1 to 7. The value in command number is used in
conditional statements to select the function to perform that particular command.

This code uses the if…else construction to match command values with functions. As
you can see, we get a program that appears to be headed toward the right margin of
the page. Each time we add another condition to the else part to test whether a com-
mand matches a particular value, we must indent the statements that follow. This is how
we tell Python that the statements in the condition are controlled by that condition.

Use the elif keyword to simplify conditions
Fortunately, Python provides a way that conditions of this form can be simplified. The
else if statements can be combined into the single keyword elif.

EG8-06 Functions and Menu elif

command=read_int_ranged(menu,1,7)

if command==1:

 print_sales()

elif command==2:

 sort_high_to_low()

elif command==3:

Read in the command
Test to see if the command is number 1

Perform the print_sales function for command 1
Test to see if the command is number 2

227Sort using bubble sort

 sort_low_to_high()

elif command==4:

 highest_and_lowest()

elif command==5:

 total_sales()

elif command==6:

 average_sales()

elif command==7:

 read_sales(10)

Sort using bubble sort
The next thing we need to do is to write code that does some sorting. Sorting is
something that computer programs spend a lot of time doing. However, as with other
operations, you must tell a computer exactly how to do that sorting. A computer can’t
sort an entire list at once; it can work on only one item at a time. Looking at sorting
programs is a good idea because doing so helps you understand how a complex
problem can be broken down into a series of smaller steps.

Computer scientists talk a lot about algorithms. An algorithm expresses a series of
actions that can be performed to solve a particular problem. Programming is really
about taking an algorithm and converting it into a sequence of instructions that tells
the computer what to do. This brings into focus one of the most important points of
programming: If you don’t have the algorithm, you can’t write the program. In other
words, if you don’t know the sequence of steps that solves the problem, you can’t
make a program to solve the problem.

When it comes to sorting collections of data, there are several different algorithms,
including the bubble sort. Bubble sorting progressively sorts lists one step at a time by
comparing adjacent items and swapping items that are in the wrong order.

Next, we’ll look at how bubble sorting works in detail and then convert the algorithm
into Python code. (Bubble sorting works well for small data sets, but it is not always
the best way to sort large amounts of data. If you’re interested in how computers
perform sorting, you can find many online resources.)

228 Chapter 8 Storing collections of data

Initialize a list with test data
While we’re creating the sort program, it would be useful to have some test sales
values with which to work. We could enter the sales values by hand each time, but that
would be rather tiresome. Python lets us create a list of values very easily:

sales=[50,54,29,33,22,100,45,54,89,75]

This statement creates a sales list that contains the values that were typed in above.
A program can still append new values to the end of this list.

Sort a list from high to low
Figure 8-1 shows the list items—the test data—that we’re using. Suppose we want to
implement the behavior of the sort_high_to_low function, which will leave the list
with the highest value at the item with the index 0 and the lowest value at the index 9.

50 54 29 33 22 100 45 54 89 75

0 1 2 3 4 5 6 7 8 9

Figure 8-1 List items

A Python program can perform only one comparison at a time. To sort the values, the
program will keep making the list “less unsorted” until finally the items in the list are in
the correct order. We could start by comparing the items at the beginning of the list:

def sort_high_to_low():

 '''

 Print out a list of the sales figures sorted low to high

 '''

 if sales[0]<sales[1]:

 # these two items are in the wrong order

 # the program must swap them

Swap two values in variables
Swapping two values in variables turns out to be a bit more complex than you might first think.

if sales[0]<sales[1]:

 # these two items are in the wrong order

 # the program must swap them

 sales[0]=sales[1]

 sales[1]=sales[0]

Question: This code looks like it might work, but in fact it is broken. Any idea why?

Answer: What the code actually does is put a copy of sales[1] into sales[0]. Here’s why:

 ◦ The first statement puts the value of sales[1] into sales[0]. Both list items now
contain sales[1] (in our case, 54).

 ◦ The second statement puts the value of sales[0] (which is 54, remember) back into
sales[1].

 ◦ So, both items end up with the same value in them, which is bad.

The way to fix this is to store the value of sales[0] temporarily so that we don’t lose the
value when we put sales[1] into it:

if sales[0]<sales[1]:

 # these two items are in the wrong order

 # the program must swap them

 temp=sales[0]

 sales[0]=sales[1]

 sales[1]=temp

The variable temp is used to hold this temporary value.

WHAT COULD GO WRONG

229Sort using bubble sort

The if construction is controlled by a logical expression that compares sales[0] with
sales[1]. If sales[0] is less than sales[1], it’s in the wrong order (we want the largest
values at the start of the list), and the two items need to be swapped because we’re
sorting from highest to lowest.

Work through a list using a loop
This code uses some new features of Python and is worthy of careful study.

Question: Why have you used a for loop, rather than a while loop?

Answer: Either kind of loop will work fine. However, it turns out that the for loop version
is slightly smaller. The range statement doesn’t waste memory producing a list of values
that the for loop then works through. You can think of a range as a “number generator”
that will give you another value in the sequence each time you ask it for one.

CODE ANALYSIS

230 Chapter 8 Storing collections of data

By swapping two items that are in the wrong order, we make the list a bit less out of
order. Our program could now move on to the next pair of numbers and repeat the
process to improve the sort still more.

if sales[1]<sales[2]:

 # these two items are in the wrong order

 # the program must swap them

 temp=sales[1]

 sales[1]=sales[2]

 sales[2]=temp

We could repeat this construction all the way to the end of the list, but it would be
rather time-consuming to write the program. And when your customer with the ice-
cream stands comes to you and says that she now has 50 sales outlets, you would be
forgiven for bursting into tears.

However, if you take a careful look at the code used for swapping items, you’ll notice
something interesting. The action the code performs is the same for each pair of
numbers; it is just that we move one position down the list to perform the second test.
This means we can use a loop to count through the list and work through it with just a
single if construction:

 1. for count in range(0,len(sales)-1):

 2. if sales[count]<sales[count+1]:

 3. temp=sales[count]

 4. sales[count]=sales[count+1]

 5, sales[count+1]=temp

Question: What does the len function on line 1 do?

Answer: The len function measures the length of a collection, such as a list, and returns the
number of items in the list. I’m using it in this program because I don’t want to have to change
anything if the number of items in the list changes. This version of sorting will be able to sort
any size of list because the loop is controlled by the length of the list being sorted.

Question: Why is the limit of count the same as the length of the list minus 1? (You can see
this on line 1 of the program.)

Answer: This is because the bubble sort in the program compares an item in the list with
the one after it. If we allowed the range to go all the way to the last item of the list, the
program would try to compare the last item with the value beyond it, which doesn’t exist.

231Sort using bubble sort

The first time through the loop, the count variable will contain the value 0, so the test
will compare sales[0] and sales[1]. Next time around the loop, count will contain
the value 1, so the test will compare sales[1] and sales[2]. The loop will continue
down the list until it reaches the end.

EG8-07 Bubble sort first pass

def sort_high_to_low():

 '''

 Print out a list of the sales figures sorted high to low

 '''

 for count in range(0,len(sales)-1):

 if sales[count]<sales[count+1]:

 temp=sales[count]

 sales[count]=sales[count+1]

 sales[count+1]=temp

Above, you can see a version of the sort function that performs a single pass through
the data. This function doesn’t completely sort the list, but it does produce a result
that is slightly less out of order than the original. Figure 8-2 shows the contents of the
list after the sort function has made a single pass through it.

54 50 33 29 100 45 54 89 75 22

0 1 2 3 4 5 6 7 8 9

Figure 8-2 Partially sorted list

232 Chapter 8 Storing collections of data

You can see that some values have not moved much, while others have moved quite
a bit. In general, all the high numbers have “bubbled” toward the left (the top of the
list), while all the low numbers have moved toward the right. The value 22, which is
the lowest number in the list, has been carried all the way to the right (the bottom)
of the list. The value 100, which is the largest number in the list, has been moved one
step toward the top of the list. Numbers are “bubbling” toward their correct positions
in the same way that bubbles go up and down in a fizzy drink. This is how the bubble
sort technique gets its name.

We can complete the sort by making multiple passes through the data, swapping
values that are out of order. With each pass through the list, the larger values bubble
to the top as they are swapped with the smaller values that move toward the bottom.
After just one pass through the list, we can be sure that the smallest value is now at the
bottom of the list, and we can now make another pass to push the next smallest value
into position. In a worst-case scenario, where the largest value was at the bottom of
the list, it would take nine (or length – 1) passes to bubble this value to the top.

Here is the code that performs multiple passes by using a loop to repeat the sort:

EG8-08 Bubble sort multiple passes

def sort_high_to_low():

 '''

 Print out a list of the sales figures sorted high to low

 '''

 for sort_pass in range(0,len(sales)):

 for count in range(0,len(sales)-1):

 if sales[count]<sales[count+1]:

 temp=sales[count]

 sales[count]=sales[count+1]

 sales[count+1]=temp

 print_sales()

The outer loop causes the program to make multiple passes through the code. The
variable sort_pass is used to count the passes through the list. When the loops finish,
the numbers will all be sorted from high to low.

Sales figures

Sales for stand 1 are 100

Sales for stand 2 are 89

Sales for stand 3 are 75

Sales for stand 4 are 54

Sales for stand 5 are 54

Sales for stand 6 are 50

Improving performance
The sorting process works correctly, but it might be possible to improve the efficiency of
the program.

Question: Is the program making more comparisons than necessary?

Answer: Yes. If you think about it, once the program has made one pass through the list,
the smallest number is guaranteed to be at the bottom of the list. It’s now a waste of time
to check to see whether this value needs to be swapped with another value because it
never will be. We can use the pass counter to make the program travel a shorter distance
down the list with each pass:

for sort_pass in range(0,len(sales)):

 for count in range(0,len(sales)-1-sort_pass):

 if sales[count]<sales[count+1]:

 temp=sales[count]

 sales[count]=sales[count+1]

 sales[count+1]=temp

Take a careful look at this code. The crucial statement is the one controlling the inner loop:

for count in range(0,len(sales)-1-sort_pass):

This statement uses the value of sort_pass to reduce the distance down the list that
each pass travels. This simple change roughly halves the number of comparisons that the
program does.

Question: Is the program performing more passes through the list than necessary?

Answer: The answer is probably. The outer loop has been written to handle the worst-
case scenario, in which the largest number is at the bottom of the list and needs to
be bubbled all the way to the top. If the largest value is somewhere else in the list, the
program will be making passes through the list when it is already sorted, which is a waste
of computer time. It would be best if the sorting stopped as soon as the list was in the
correct order. But how can the program detect that?

CODE ANALYSIS

233Sort using bubble sort

Sales for stand 7 are 45

Sales for stand 8 are 33

Sales for stand 9 are 29

Sales for stand 10 are 22

If the program makes a pass through the data and doesn’t make any swaps, then the list
must be in the correct order. We can add a flag to the program that is set when two items
are swapped. If this flag is still clear after a pass, it means that the list is in order:

EG-09 Efficient Bubble Sort

for sort_pass in range(0,len(sales)):

 done_swap=False

 for count in range(0,len(sales)-1-sort_pass):

 if sales[count]<sales[count+1]:

 temp=sales[count]

 sales[count]=sales[count+1]

 sales[count+1]=temp

 done_swap=True

 if done_swap==False:

 break

The program uses a Boolean variable called doneSwap. This variable is set to False before we
make a pass through the data. It is checked after the pass, and if it is still false, the program
breaks out of the loop that controls the passes through the list.

Sort alphabetically
The bubble sort algorithm works for strings as well as for integers, and we saw in Chapter 5
that the Python relational operators work between strings. Now see if you can make your
party guest program display the guest names for your party in alphabetical order. You could
use this program any time you want to sort some words into order.

MAKE SOMETHING HAPPEN

234 Chapter 8 Storing collections of data

Sort a list from low to high
Our program also needs a low-to-high display of the sales data. Implementing this
request turns out to be quite easy. We just need to change the less-than operator to a
greater-than operator in the statement in the middle of the loop that compares values
as the loop works through each of the items.

235Sort using bubble sort

EG8-10 Sort low to high

if sales[count]>sales[count+1]:

 temp=sales[count]

 sales[count]=sales[count+1]

 sales[count+1]=temp

Find the highest and lowest sales values
You might also want to find the highest and lowest sales in the set of results. Before
you write the code to do this, it’s worth thinking about the best algorithm to use. In
this case, the program can implement an approach very much like one that a human
would use. If you gave me some numbers and asked me to find the highest value,
I would compare each number with the highest value I had seen so far and replace
the current highest value each time I found a larger one. In programming terms, this
algorithm would look a bit like the following. (This is not Python as such; a description
like this is sometimes called pseudocode. It looks something like a program, but it just
expresses an algorithm; it does not run as part of the program.)

if(new value > highest I've seen)

 highest I've seen = new value

When the program starts, we can set the “highest I’ve seen” value to the value of the
item at the start of the list (because this is the highest value we’ve seen at the start of
the process). We could then use a for loop to work through the items, checking each
one against the current highest value.

highest=sales[0]

for sales_value in sales:

 if sales_value>highest:

 highest=sales_value

We can use the same approach to find the smallest value. This time, we’re looking for
values that are smaller than the smallest one we have seen so far.

lowest=sales[0]

for sales_value in sales:

 if sales_value<lowest:

 lowest=sales_value

236 Chapter 8 Storing collections of data

However, because we’re already making a pass through the list to find the largest
value, we can make the program slightly more efficient by using the same loop to find
the highest and lowest in a single pass through the data. (Note that at the start of the
loop, the initial item in the list is both the highest and lowest value.)

 def highest_and_lowest():

 '''

 Print out the highest and the lowest sales values

 '''

 highest=sales[0]

 lowest=sales[0]

 for sales_value in sales:

 if sales_value>highest:

 highest=sales_value

 if sales_value<lowest:

 lowest=sales_value

 print('The highest is:', highest)

 print('The lowest is:', lowest)

Evaluate total and average sales
To work out the total of sales, the program must add all the items in the list. You can
do this by using another for loop or by adding code to the loop that we also use to
find the highest and lowest sales values.

EG8-12 Total Sales

def total_sales():

 '''

 Print out the total sales value

 '''

 total=0

 for sales_value in sales:

 total = total+sales_value

 print('Total sales are:', total)

Once we have the total sales, we can calculate the average sales value. Of course,
the average of a set of numbers is the sum of the numbers divided by the number of
items in the list. For example, if this list contains the four numbers 4, 6, 10, and 12, the
average is determined by adding the numbers 4 + 6 + 10 + 12=32 and then dividing
the sum by four (the total number of items in the list: 32/4=8. With the total number
of sales calculated, working out the average is very easy.

237Sort using bubble sort

EG8-13 Average Sales

def average_sales():

 '''

 Print out the average sales value

 '''

 total=0

 for sales_value in sales:

 total = total+sales_value

 average_sales=total/len(sales)

 print('Average sales are:', average_sales)

The code to work out the total is the same as the code you’ve already seen. The value
average_sales is set to the total sales divided by the number of sales values, which we
can get from the length of the sales list.

Complete the program
We now have all the features we need to create the finished application, but we still
need to complete the logic. At this point, we can go back to the storyboards that we
created with the customer. The storyboards give us the sequence we want. Essentially,
the program breaks down into two loops, an outer loop and an inner loop. The outer
loop runs forever. When it starts running, it first allows the user to enter some data.
Once the program has some data with which to work, it performs the inner loop. This
loop repeatedly reads in a command and acts on it. The following code shows the
structure of the nested loops.

EG8-14 Complete Program

Start by reading in the sales

read_sales(10)

Now get the command from the user

menu='''Ice-cream Sales

1: Print the sales

2: Sort High to Low

3: Sort Low to High

4: Highest and Lowest

5: Total Sales

6: Average sales

7: Enter Figures

238 Chapter 8 Storing collections of data

Enter your command: '''

Now repeatedly read commands and act on them

while True:

 command=read_int_ranged(menu,1,7)

 if command==1:

 print_sales()

 elif command==2:

 sort_high_to_low()

 elif command==3:

 sort_low_to_high()

 elif command==4:

 highest_and_lowest()

 elif command==5:

 total_sales()

 elif command==6:

 average_sales()

 elif command==7:

 read_sales(10)

Store data in a file
What if your customer wants the program to be able to store and retrieve sales values
so that she doesn’t need to enter them more than once? In this example, you’ll add
two new menu items: Save Sales and Load Sales.

Ice-cream Sales

1: Print the Sales

2: Sort High to Low

3: Sort Low to High

4: Highest and Lowest

5: Total Sales

6: Average Sales

7: Enter Figures

8: Save Sales

9: Load Sales

239Store data in a file

This is the new menu display. The two new commands are numbers 8 and 9. The com-
mands themselves are implemented by two new functions.

EG8-15 Load and Save

def save_sales(file_path):

 '''

 Saves the contents of the sales list in a file

 file_path gives the path to the file to save

 Raises file exceptions if the save fails

 '''

 print('Save the sales in:', file_path)

def load_sales(file_path):

 '''

 Loads the sales list from a file

 file_path gives the path to the file to load

 Raises file exceptions if the load fails

 '''

 print('Load the sales from:', file_path)

These are the “stub” versions of the functions. Each function has one parameter,
which is the path to the file that will be used to store the sales values. I’ve added print
commands so that we can test the program to make sure that the functions can be
selected by a user of the program. If you run the example program, you will see that
these functions can be selected and run from the menu. Now we must fill in the con-
tents of each function.

Write into a file
When a program interacts with a file, Python creates an object that represents a con-
nection to that file. The function open creates one of these objects. If you were lucky
enough to have a personal assistant, you could ask him to “Write a letter to the boss at
Microsoft,” and he would take down everything you say, put it in a letter, and send it
off. Your personal assistant would understand commands such as “write a letter” and
“read me a report,” and the open function is very similar.

output_file=open('test.txt','w')

 The file object being written
 The path to the file being created

 File mode

240 Chapter 8 Storing collections of data

The open function accepts two arguments. The first argument is a string containing
the path to the file to be opened. In its simplest form, a path can be just the name of
the file. The above statement opens a file called test.txt. The second argument is a
string containing the mode of the connection to the file. This controls how the file will
be used. The mode string 'w' means “write.” The statement above will prepare a file
for writing. If the file already exists, the open function will erase the existing file before
writing new content into it.

It’s very easy to overwrite an existing file
Most programs are very careful to prevent a user from overwriting important files. An “Are
you sure?” message will appear if someone tries to save a new file over an existing one.
However, the Python open function doesn’t do any of this. If you really want to stop files from
being overwritten by your programs, you’ll need to add this behavior yourself. The os library
supplied with Python contains a path library (libraries can contain libraries) that can help
with this as you can see in the Python code below:

import os.path

if os.path.isfile('text.txt'):

 print('The file exists')

The isfile method accepts a file path as an argument and returns True if that file is found.

WHAT COULD GO WRONG

Once the file has been opened, our program can begin storing lines of text in the file.
The program can do this by calling the write method provided by the file object.

output_file.write('First line\n')

output_file.write('Second line\n')

output_file.close()

When a program has finished writing to a file, it must call the close method on
the file. This method completes any unfinished writes and releases the file. It’s very
important that your program closes a file when it has finished writing. There are two
reasons why closing is important. First, closing a file ensures that all the data is stored.
Second, closing a file makes the file available for use by other programs. A file opened

File writing
Question: Why have you called the write behavior a method? Isn’t it a function?

Answer: In Python, a method is much like a function, except that it’s created as part
of an object. A function is code that exists outside any object. The print and input
functions are not part of an object. A program can just use them directly. However, the
write method is part of the file writing object. If we want to use write, we must have a
file object. You can think of functions as “things a program can just do” and methods as
“things an object can do for us.” If the write behavior was a function, a program would
need some way of knowing which file was being written. Making the write method part
of a file object makes it very easy to work with more than one file at the same time. We
can just use the write method on the different file objects. We’ll investigate objects and
methods in detail later in the book.

Question: What does the \n mean at the end of the strings?

Answer: We’ve seen \n before. It’s the escape sequence that means “new line.” The
write function doesn’t automatically take a new line at the end of a write. If we want to
write a new line in a file, we must do that explicitly. This behavior is different from how
we’ve seen the print function work. The print function automatically takes a new line
at the end of every print, but with the write method you must explicitly ask for one.

Question: Where is the file test.txt actually created?

Answer: The file is created in the same folder that holds the running Python program.
In other words, if I had a folder called My Programs, which contained a Python program
called MakeFiles, when I run the MakeFiles program, any files it creates will be stored in
the My Programs folder.

CODE ANALYSIS

241Store data in a file

for writing is “locked” and cannot be accessed until the write operation is complete.
Trying to write to a file that has been closed will result in an error.

EG8-16 File Output

output_file=open('test.txt','w')

output_file.write('line 1\n')

output_file.write('line 2\n')

output_file.close()

The above program creates a file called test.txt and writes two lines of text into the
file. The file is created in the folder containing the program when it runs.

Folders (or directories) are used to organize information we store on the computer. Each
file you create is placed in a particular folder. In Windows, several folders are automati-
cally created—Documents, Music, Pictures, and Videos. You can create your own folders
inside these folders.

A path, or file path, refers to the location in which a file is stored, such as C:/Documents/
Finances/MyFinances.xls. The file MyFinances.xls is stored in the Finances folder, which is
stored inside the Documents folder, which is found on the C drive. The path to a file can
be broken into two parts: the location of the folder and the name of the file itself. If you
don’t give a folder location when you open a file (as we have been doing with the file
test.txt) then Python assumes that the file being used is stored in the same folder as the
running program.

If you want to use a file in a different folder (which is a good idea, because data files are
hardly ever stored in the same folder as the program that opens that file), you can add
path information to a file name:

path = 'c:/data/2017/June/sales.txt'

The above statement creates a string variable that contains the path to a file called sales.
txt. This file resides in the folder June, which is stored in the folder 2017, which is stored in
the folder data on drive C.

The forward slash (/) characters in the string serve to separate the folders along the path
to the file. Note that if you’re using a Windows PC, you might be used to using the back-
slash (\) character to separate items of a path. In Python, you must use the forward slash
character, as above.

Question: Can any program use a file written from a Python program?

Answer: Yes. You can open the file test.txt with any application on your machine. The
Python file handling is always based on the file functions of the underlying operating
system.

Question: Can I add lines on the end of a Python file?

Answer: Yes, you can. If you open the file in append mode by using the mode string ‘a’
then any writing you do will be appended to the end of an existing file. If the file you’re
appending to doesn’t exist, it is created automatically, just as it would be for the ‘w’
file mode.

242 Chapter 8 Storing collections of data

Write the sales figures
We can now fill in the save_sales function. You can find this function in the example
file EG8-17 Save sales.

The save_sales function
The save_sales function is the most complicated function we’ve seen so far and is worth
close study. However, before we start considering specific questions, it’s important to con-
sider the purpose of save_sales. The program contains a list of sales figures. We want to
store that list in a text file. We have a method called write that we can use to write a string of
text into a file. So, the save_sales function must take each sales figure and write it into a file.

Question: What does the str function do? Why are we using it?

Answer: You can find the str function used in the statement on line 13. The function is
used to take a number (a sales value) and convert it into a string of text. We don’t have to
convert things into strings with the print function because print behaves differently
than the write method. The print function can accept any kind of value and will print it
as a string. The write method must be given a string to write to the file. This means that
our program must explicitly convert numbers into text before passing them into write.
The str function performs this conversion.

Question: Why can’t we just write out the sales list as one object?

Answer: A list is a container, which provides methods, such as append, that can be used
to add things to a list. However, the list doesn’t contain any code that could be used to
write its contents to a file. Our program must take each item from the list and write it out.
When reading back the list, the program must build up a list from the items in the file.

CODE ANALYSIS

243Store data in a file

 1. def save_sales(file_path):

 2. '''

 3. Saves the contents of the sales list in a file

 4. file_path gives the path to the file to save

 5. Raises file exceptions if the save fails

 6. '''

 7. print('Save the sales in:', file_path)

 8. # Open the output file

 9. output_file=open(file_path,'w')

 10. # Work through the sales values in the list

 11. for sale in sales:

 12. # write out the sale as a string

 13. output_file.write(str(sale)+'\n')

 14. # Close the output file

 15. output_file.close()

244 Chapter 8 Storing collections of data

Read from a file
Reading a file is very much like writing a file. The program creates an object that pro-
vides the connection to the file and then calls methods on the object to perform the
required actions. A program can open a file for reading by using the mode string 'r'.

input_file=open('test.txt','r')

This statement creates an object that can be used to read items from a file. Our pro-
gram can treat the file object as a collection of lines that can be used to control a for
loop construction:

for line in input_file:

 print(line)

The for construction above will work through the lines in the file and print each one.
The loop ends when the last line has been read from the file.

input_file.close()

Once the file has been read, it must be closed.

EG8-18 File Input

input_file=open('test.txt','r')

for line in input_file:

 print(line)

input_file.close()

This is the complete file printer program. It opens the file for reading, prints out each
line, and then closes the file. If you run this program on the text file we created earlier,
you’ll see that the contents of the file are printed.

Work through each line in the file
Print the line

Reading from files
Question: If you look at the following output, you’ll notice that there are empty lines after
each line of the text. Why is this?

line 1

line 2

Answer: This is because each line read from the file has a new line character ('\n') on the
end. We added the new line when we wrote the file. The new line on the end of the line is read
back in when Python reads the file. The print function adds a new line at the end of each line
when it prints the line, so the text as printed has two new lines at the end of each line.

There are two ways we can fix this problem. One way would be to tell the print function
not to add a new line when it prints the text.

print(line, end='')

The end parameter to the print function specifies the character to be printed at the end
of each line. The parameter has a default value of new line character ('\n'), but when we
call the function we can give an argument that sets a new value for the line end. In the
above statement, I’ve set the line end to an empty string, so that only the line ending
from the input string is printed.

A better way to solve this problem is to remove the line feeds from the line that was
read from the file. The strip method asks a string to return a version of itself minus any
“whitespace” characters. Whitespace characters are all the spaces that are not visible when
printed, including spaces and tabs, and can appear at the beginning or end of a string.

line = line.strip()

The above statement creates a version of line with no whitespace characters.
Whitespace characters inside the string, such as the spaces between words, are pre-
served. Only the start and end of the string is affected.

Software developers talk about “conditioning” input to make sure there are no unex-
pected items in the text. The strip method is useful for making sure that there are no
nonprintable characters at the start or end of text that is read in. If you want to strip
whitespace only from the left or right ends of the string, you can use the lstrip or
rstrip methods, respectively.

CODE ANALYSIS

245Store data in a file

Question: Why do we have to close the file we’re reading?

Answer: Reading from a file will never change the contents of the file, so forgetting to
close the file won’t mean your program will damage any data. However, you should still
close a file after you’ve finished using it so the file is available for other programs to use.
You might also find that your computer refuses to shut down if it thinks files are open.

Question: What would happen if I tried to write to a file that I had opened for reading?

Answer: This will result in an exception being raised. However, you can use the mode
string 'r+' to open a file for both reading and writing. Reading and writing a file from
the same program is quite hard to do. You must make sure that writing the file doesn’t
corrupt data that’s already there. If the program writes a line longer than the one in the
file, it will corrupt information on the following line. A program will not normally change
the data in a file. Instead it will load data from the file, update the data, and then re-write
all the data into the file.

Question: Can a program read an entire file at once?

Answer: Yes. An input file object provides a read method that reads the entire contents
of the file in one go. Python strings can hold very large amounts of text, so you can read
large files this way. The line endings will be preserved in the string that is read. We can
use the read method to create a very simple file printing program:

input_file=open('test.txt','r')

total_file=input_file.read()

print(total_file)

input_file.close()

You might use this method, for example, if you were creating a file copying program.

246 Chapter 8 Storing collections of data

Read the sales figures
We can now fill in the load_sales function.

 1. def load_sales(file_path):

 2. '''

 3. Loads the sales list from a file

 4. file_path gives the path to the file to load

 5. Raises file exceptions if the load fails

 6. '''

 7. print('Load the sales from:', file_path)

 8. # Clear the sales list

247Store data in a file

 9. sales.clear()

10. # Open the file for input

11. input_file=open(file_path,'r')

12. for line in input_file:

13. line=line.strip()

14. sales.append(int(line))

15. input_file.close()

The load_sales function
This method is like the reverse of the save_sales function, which worked through the sales
list adding sales figures to the file. The load_sales function works through the input file
adding figures to an empty sales list.

Question: What does the int function do?

Answer: The int function is used on line 14. You can think of it as being the reverse of
the str function that was used in save_sales. The str function can convert a number
into a string. The int function converts a string into a number. We’ve used it before when
we took strings entered by the user and converted them into numbers.

Question: What would happen if the input file was empty?

Answer: It turns out that this would work correctly, in that the statements in the for loop
would not be performed, so the code would create an empty sales list.

CODE ANALYSIS

Deal with file errors
Programs that deal with files also need to deal with the possibility that things might go
wrong. A file might not be found, a USB drive might be unplugged, or the user might
enter the wrong file name. Two things are very important to us if an error occurs:

1. No files should be left open.

2. The user must be made aware that something has gone wrong.

When a program action involving a file fails, the failure will raise an exception. We first
saw exceptions when we converted strings of text into numbers using the int func-
tion. We discovered that if the string doesn’t contain digits that make up a number,

Dealing with file handling exceptions
The code that performs the file writing is enclosed in a try… except construction. If any of
the file actions raise an exception, the except part of the try construction is performed. This
looks like it might solve our problems, but we need to take a closer look.

Question: In what circumstances will code in the exception part be executed?

Answer: If any of the file functions on statements 2, 4, or 5 raise an exception, the code
in the except part of the construction will be obeyed. So, we see the error message only
when an error occurs.

Question: In what circumstances will the “File written successfully” message be printed?

Answer: This message is printed only if every step in the file writing—including closing
the file—completed successfully.

Question: I can see that the error message is always printed if a file error occurs, but will the
output file always be closed if an error occurs?

Answer: No. That is the problem with this code. If a write action fails, the execution will
switch straight to the except behavior, leaving the file open. This is a problem. One way
to deal with this would be to close the file in the exception handler code as well, but a
better way is to add a finally part to the construction.

CODE ANALYSIS

248 Chapter 8 Storing collections of data

the int function fails and raises an exception. The same mechanism is used to alert a
program to failure when using files. A program can deal with exceptions by using the
try…except construction, so we can write code such as the following version of the
file saving code from the sales program. It works through the sales list and saves each
item, but any exceptions raised when using the file are caught and cause a message to
be printed.

 1. try:

 2. output_file=open(file_path,'w')

 3. for sale in sales:

 4. output_file.write(str(sale)+'\n')

 5. output_file.close()

 6. print('File written successfully')

 7. except:

 8. print('Something went wrong writing the file')

Start of the try…except construction
Code that might raise exceptions

This statement is reached only
if no exceptions are raised

Code that handles exceptions

try:

 output_file=open(file_name,'w')

 for sale in sales:

 output_file.write(str(sale)+'\n')

except:

 print('Something went wrong writing the file')

finally:

 output_file.close()

The finally part is an additional item that we can add to a try construction. It contains
code that is always obeyed, no matter what happens. In the above code, we can be sure
that the output file is closed regardless of whether an exception was raised in any part of
the try construction.

Statements in the finally part are always obeyed

Use the with construction to tidy up file access
The try…except…finally construction is one way to deal with file errors. However, I
don’t think it’s perfect because I still must remember to make my program close a file
when I’ve finished with it. It turns out that Python will get around to closing a file that
my program leaves open, but I can’t be sure when this will happen.

A program that forgets to close a file could exhibit the worst kind of bad behavior. It
might fail, but only every now and then. The user might find that if they tried to reopen
a file that they had just written, their program would fail because Python had not gotten
around to closing it. At other times, however, the program would work perfectly.

PROGRAMMER’S POINT

Intermittent faults are the worst kind to fix
If someone calls me and tells me that the program I wrote for them has completely failed,
the solution I must implement probably won’t be that time consuming. That kind of fault
is often surprisingly easy to fix. However, I dread getting the message that my program
sometimes goes wrong. That means that before I can fix the fault, I must make it reoccur.
I’m prepared to put a lot of extra effort into a design to try to remove the possibility of any
intermittent faults.

The designers of Python were concerned about this. They wanted a way that pro-
grammers could make sure that resources used by programs are obtained and
released in a reliable way. So, they added the with construction to the language.

249Store data in a file

250 Chapter 8 Storing collections of data

The with construction, shown in Figure 8-3, provides a protocol for obtaining and
releasing resources. A given service can be written to work with the with construction
so that the instruction to release the resource is automatically performed without the
programmer needing to do anything. For now, we don’t need to know how to make
services that can be managed by the with construction, we just must understand how
to use the with construction when working with files.

expression
(expression that

generates the
resource to be used)

:as name
(name to represent
the resource being

used)

with
(start of
the with

construction)

suite
(statements
that use the

resource)

Figure 8-3 Anatomy of a with construction

A program uses the with construction to obtain an object that will provide a service.
In the case of the following code sample, the object being obtained has the name
output_file. The with construction will activate an “enter” behavior for the object it
is working with when it obtains the resource. In the case of a file object, this behavior
will cause the file to be opened.

EG8-21 Sales load using with

try:

 with open(file_name,'w') as output_file:

 for sale in sales:

 output_file.write(str(sale)+'\n')

except:

 print('Something went wrong writing the file')

When the program exits, the statements inside the with construction automatically
activate the “exit” behavior on the resource the with construction is managing. This
is used by the file object to close the file it’s using. The with construction ensures that
the exit behavior is always performed, which means that the programmer doesn’t
need to remember to close a file; it closes automatically.

In the above code example, the whole with construction is enclosed in a try…except
construction. This is because with doesn’t deal with raised exceptions; it just manages
an object. If the file write raises an exception, the with construction will first perform
the exit behavior (which will close the file) and then pass on the exception to be picked
up by the error-handling code.

 Outer exception to deal with file errors
 Start of the with construction

 Resource being managed by the with construction
 Name of the resource to be used

within the with suite

Code that uses the resource
Exception handler

251Store tables of data

Store tables of data
A list is a one-dimensional data structure. In other words, it has only a length. How-
ever, sometimes a program needs to store more than one dimension of data. For
example, let’s say that the customer for the ice-cream sales analysis program has
come back and told you how pleased she is with the code and that she’s thought of
some improvements. She would like to be able to store sales for different days of the
week so she can keep track of sales over time. She has drawn out a table that shows
how the data would look.

MONDAY TUESDAY WEDNESDAY …

Stand1 50 80 10

Stand2 54 98 7

Stand3 29 40 80

…

You can think of the sales list you’ve used up to this point as one column in the table
(for example, the sales for Monday). The user can enter sales figures for that day, but
what the customer now wants is a way for the program to store successive columns of
sales figures for subsequent days.

One way to do this would be to have multiple lists, called Monday, Tuesday, Wednes-
day, and so on. However, this arrangement seems a bit like using individual variables
for each sales figure, the problem we addressed earlier by using a list. Working with
the data stored in this way would be difficult. For example, it would be very hard for
a program to find the highest sales for the week because the program would have to
consider each list individually.

Record a list with a save function
Add a save function to your party guest program so that you can record a list of people who
attended your party.

MAKE SOMETHING HAPPEN

Inadequate index values
Question: Which of the following statements would fail when the program runs?

Statement 1: week_sales[0][0] = 50

CODE ANALYSIS

252 Chapter 8 Storing collections of data

We can solve this problem by creating a list that contains other lists:

mon_sales=[50,54,29,33,22,100,45,54,89,75]

tue_sales=[80,98,40,43,43,80,50,60,79,30]

wed_sales=[10,7,80,43,48,82,33,55,83,80]

thu_sales=[15,20,38,10,36,50,20,26,45,20]

fri_sales=[20,25,47,18,56,70,30,36,65,28]

sat_sales=[122,140,245,128,156,163,90,140,150,128]

sun_sales=[100,130,234,114,138,156,107,132,134,148]

The Python statements above create seven lists of sales figures, one for each day of
the week. I’ve created some sample data for each week that we can use to illustrate
how the solution might work.

week_sales=[mon_sales,tue_sales,wed_sales,thu_sales,fri_sales,sat_sales,sun_sales]

The Python statement above creates a list called week_sales that contains all these
lists. It is a list of lists. You can think of each individual list as a row. You can think of a
list of lists as collection of rows. When a program wants to refer to an individual sales
value, it must specify the row, followed by the position in that row of that value.

print(week_sales[1][0])

This statement would print the value 80, which is the Tuesday sales for stand 1.
(Remember that list index values always start counting from zero.)

In the statement above, we created the week_sales list using a single statement to
add all the sales values at the same time. We could have created this “list of lists” by
appending each list of sales figures.

Lists for each day of the week

 List containing the entire week's sales.

Statement 2: week_sales[8][7] = 88;

Statement 3: week_sales[7][10] = 100;

Answer: Statement 1 is completely correct (as it should be; it is used in the text). State-
ment 2 will fail because the first index (the day of the week) has the value 8. The week_
sales list, however, contains seven items, one for each day of the week, so this statement
is trying to access a nonexistent item. Statement 3 is also invalid. Because items are
indexed starting at zero, this statement attempts to go beyond both lists, and the pro-
gram will fail as a result. If we really want to access the item at the bottom right corner of
the table, we should access the item week_sales[6][9].

PROGRAMMER’S POINT

Make it easy to test your programs
My experience as a programmer has been that if testing your program is very difficult, you
just don’t do it. Unless the tests are really easy, or better yet completely automatic, you
won’t bother with them.

It took me just a few minutes to create the test data above. In the finished program, I would
create a function called make_test_data that I could call to create test data with which to
easily test my program. If I was serious about testing, I’d even get creative with the random
number generator to create large amounts of data to test my programs.

Making things easy to test even extends as far as video games. Rather than having to
play for half an hour to get to the level you want to test, you should have some way of
skipping levels.

Whenever you find yourself repeating a pattern of steps in order to test your program,
consider how you can automate this action.

Use loops to work with tables
The Python for loop construction can work through lists of lists just as easily as it can
work through lists of individual values. If we want a program that will calculate the
total sales for a week, we can do this as follows:

253Store tables of data

Loop counting
Question: How many times will the statements inside the two loops be obeyed?

Answer: They will be obeyed 70 times. The outer loop is obeyed 7 times, the inner loop is
obeyed 10 times. To get the total number of times around the loop, you multiply one by
the other, giving 70 times around the loop.

Question: How would you change this program so that it could handle more than one
week’s worth of sales?

Answer: We can add more days to the list. From the point of view of the table, this would
be equivalent to adding more rows.

Question: How would we add a day’s worth of sales to the weekly list?

Answer: To do this, we would need to read in a list of values and then add it to the
weekly list:

Read in a set of sales values

read_sales(10)

Add the daily sales figures to the week

week_sales.append(sales)

You could store the sales figures for an entire year in a single list rather than just seven days’
worth. You could also add extra loops to the save and load functions so that the data could
be saved to a file and loaded.

CODE ANALYSIS

254 Chapter 8 Storing collections of data

EG8-22 Tables of sales data

total_sales=0

for day_sales in week_sales:

 for sales_value in day_sales:

 total_sales=total_sales+sales_value

The outer loop works through the entire week, pulling out the list for each day. The
inner loop works through the list for the day. Each successive value is added to the total.

Using a loop like this is called nesting. (We’ve put loops inside one another before,
which is how the program repeatedly reads and acts on commands.) Here we have an
outer loop that goes around seven times (once for each day), and an inner loop that is
performed 10 times (once for each ice-cream stand). When the loop has completed,
the program will have put all the values into the list.

Set the total sales to 0
Work through each day of the week
Work through each ice-cream stand

Add the sales to the total

More than two dimensions
If you ever need to represent a large number of tables, you can move up to a list that
contains a list of lists. The best way to visualize this type of list is as a pile of pages,
with one page for each week. The third dimension would be the number of the page
containing the results for that week.

The following statement shows how a program would add a week’s worth of sales to a
list that held a series of entries, one for each week.

 annual_sales.append(week_sales)

PROGRAMMER’S POINT

Keep your dimensions low
In all my years of programming, I’ve never had to use any more than three dimensions, and
I’ve only ever used three dimensions a couple times (and one of those occasions was to
create a “3-D Tic-tac-toe” game).

If you find yourself having lists that contain lists of lists, I would suggest that you’re trying
to do things the wrong way and that you should step back from the problem and think
about how your data fits together. Later in the book, you’ll see ways to build classes that
contain a number of related data items. It’s often much easier to make a one-dimensional
list from such structures rather than move into multiple dimensions.

The computer is quite happy to work in very large numbers of dimensions as long as it
doesn’t run out of memory. However, I’ve found that the same can’t be said for programmers.

Use lists as lookup tables
Now that you know how to store data in the program, you can discuss with the cus-
tomer again how the program is supposed to be used. The customer is quite impressed
with the data storage plans, but she now raises an interesting issue. She is concerned
that when sales figures are entered, the program doesn’t show the user the day the sales
figures are for. The program will work perfectly correctly, but it might be confusing to
use. What she would like is for the program to display the day being entered.

Enter the Monday sales figures for stand 2:

To do this, the program must display a message that identifies the day of the week.
A program could use a variable called day_number to count through the days as they

255Use lists as lookup tables

256 Chapter 8 Storing collections of data

are read. The variable could start at 0 for Monday and then count to 6 for Sunday. A
collection of if conditions could be used to convert the day number to a string:

EG8-23 Day Name If

if day_number==0:

 day_name='Monday'

elif day_number==1:

 day_name='Tuesday'

elif day_number==2:

 day_name='Wednesday'

elif day_number==3:

 day_name='Thursday'

elif day_number==4:

 day_name='Friday'

elif day_number==5:

 day_name='Saturday'

elif day_number==6:

 day_name='Sunday'

This code would work fine, but it would be tedious to type in, and there’s a good
chance that you would make a mistake. Python provides a much easier way to do this.
You can create a preset list and use it as a lookup table.

EG8-24 Day Name List

day_names=['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday']

day_name=day_names[day_number]

When the program runs, the list is created with the preset contents. There will be an
item for each day of the week. The program can now directly convert a day value in
the range 0–6 to the matching day.

Lookup tables are very useful. They can be used to create data-driven applications—
programs that work by using built-in data rather than hard-wired behaviors.

Tuples
A list is a very powerful thing. It provides a complete set of behaviors that allow pro-
grams to append new items to the list and change its contents. However, to decode

257Tuples

day numbers into day names we don’t need anything as powerful as a list. Once we
create the lookup table, we don’t want it to be changed. In fact, it would be very useful
if we could prevent changes to the list of names. We don’t want a rogue programmer
to be able to do something like this:

EG8-25 Day Name Tuple

day_names[5]='Splatterday'

This change would mean that the program would now refer to “Saturday” as “Splatter-
day,” which some people might think is hilarious but our customer would not like very
much. It turns out that a Python program can contain data collections that cannot be
modified after creation.

In Chapter 6, you were introduced to a data collection called a tuple. A tuple is much
like a list, but with one significant difference: It is not possible to change the contents
of a tuple. Python has a special word for this behavior: immutable. We say that “tuples
are immutable.”

For our purposes, we don’t want the day decode list to change. An attempt to change
the contents of a tuple containing the day_names would cause the program to fail.

Traceback (most recent call last):

 File "C:/Ch 08 Collections/code/samples/EB8-26 Day Name Tuple.py", line 9, in <module>

 day_names[5]='Splatterday'

TypeError: 'tuple' object does not support item assignment

A tuple is created as a list of items enclosed in parentheses.

day_names=('Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday')

A program can read values from the tuple, and work through it using a for loop in the
same way as a program would use a list. However, the contents of the tuple cannot
be changed.

Tuples are very useful when a program wants to work with values more complicated
than simple integers or floating-point values. For example, you might have a function
in your program that could be used by a pirate to tell you where the treasure is buried.
The function might need to return the name of a landmark and the number of paces
north and east that we need to walk to find the place to dig a hole. We have seen that
a function can return only one value, but a function can also return a tuple.

Take care with your tuple indexes
It’s important that Python programs use the result of the get_treasure_location cor-
rectly. There is a kind of “contract” between the function and any code that calls the function.
The contract states that “The first item of the tuple is the description, the second the distance
north, and the third the distance east.” If a program calling the get_treasure_location
function uses the wrong index values, it will display incorrect instructions.

EG8-26 Pirate Treasure Tuple

def get_treasure_location():

 '''

 Get the location of the treasure

 returns a tuple:

 [0] is a string naming the landmark to start

 [1] is the number of paces north

 [2] is the number of paces east

 '''

WHAT COULD GO WRONG

258 Chapter 8 Storing collections of data

def get_treasure_location():

 # get the location from the pirate

 return ('The old oak tree',20,30)

The function get_treasure_location returns a tuple that contains three values. The
first is a string, the following two values are integers. A program can use the return
value from the function to display the position to dig:

location=get_treasure_location()

print ('Start at',location[0], 'walk',location[1],'paces north and',

location[2],'paces east')

The index values identify the particular items in the tuple. The item with index 0 is the
first item in the tuple, in this case the name of the landmark, the old oak tree. The sec-
ond two items are the north and east number of paces values, respectively, and they
are index values 1 and 2. A tuple is a terrific way to return data like this, as it also stops
a program from being able to tamper with any of the items in the data.

Many times, you need a quick way of creating a value comprising a few items (for
example coordinate values x and y, or color values that contain amounts of red, green,
and blue). A tuple is very useful in these situations.

 # get the location from the pirate

 return ('The old oak tree',20,30)

Above you can see that I have added details of the parameters to the description of the
function. I don’t generally use tuples to return values that are more complex than a few items.
Later in the book, we’ll discover how to return objects that have a better-defined structure.

If a function returns a tuple or a list, we can use a different format to call the function,
which makes it slightly easier to unravel the results it returns.

EG8-27 Pirate Treasure Tuple Function

landmark, north, east = get_treasure_location()

print ('Start at',landmark, 'walk', north,'paces north and', east,'paces east')

This call of get_treasure_location would place the three values returned in the tuple
into the variables landmark, north, and east, respectively.

What you have learned
In this chapter, you’ve learned how to store large amounts of data in a Python pro-
gram using lists. A list can hold several different values. Each value in the list is called
an item. A program can add items to a list by using the append method, or it can
create a list containing a set of items. The len function can be used to determine the
number of items in a list, and a for loop can work through the items in a list. The items
in a list can be of the same type of data or many different types.

A program can locate an item in a list by using an index value, enclosed in brackets,
to identify the position of the item in the list. The item at the start of the list has the
index 0, and successive items are numbered sequentially up to the limit of the list. For
example, a five-item list would have items numbered 0,1,2,3,4. The index of a list item
can be expressed as a fixed value or by using the value of a variable. If a program uses
an index value for which there is no item (for example, trying to access an item with
the index value 5 in a five-item list) the program will fail with an exception.

A list is a one-dimensional storage device. To store two-dimensional data (for example
a table of numbers) you can create a list that contains other lists.

259What you have learned

260 Chapter 8 Storing collections of data

Lists (and other items) can be written into files. The open function can be used to cre-
ate an object that represents a connection to a file for reading or writing. The object
exposes methods that can be used to interact with the file. It can also be used with a
for construction to work through each line in the file.

When writing to a file, the program must explicitly add new line ('\n') characters to the
end of each line in the file. When the lines are read back in, a program can use the strip
function to remove new lines from lines that are read. When a program has finished
interacting with a file, it must use the close method on the file object to complete any
outstanding actions on the file and make the file accessible for other programs.

Using files may result in programs raising exceptions. These must be dealt with so that
the user is aware when something fails. The exception handlers must also ensure that
all open files are closed in the event of an error. The with construction makes it easier
to create code that ensures files are closed in the event of an error.

The Python language provides a collection storage mechanism called a tuple. A tuple
can hold several items, but it is immutable, which means that the elements in a given
tuple cannot be changed. Tuples can be used to create lookup tables and can also be
used by functions wishing to return more than one value.

Here are some points to ponder about lists.

Do we really need lists?

Yes. There are many situations where it would be impossible to create a program if
lists were not available. Very simple programs can use single variables, but to process
substantial amounts of data you need to have a list.

Do we really need tuples?

No. Tuples are very useful and make it possible for a programmer to prevent a data
item from being changed when it should not be, but we can write programs without
using a tuple at all.

How does a list actually work?

When the program creates a list, a block of memory is reserved that is big enough for
a few list items. The block of memory also holds the current number of active items
in the list (that is, those items that actually have something in them). When an item is
appended to the list, one of the items is “filled in” with the item being added. If there
is no room in the list for another item, it is automatically extended. When a program
accesses a list item, the program first checks to see whether the requested item exists
(that is, it makes sure that the index value doesn’t refer to an item that does not exist).
If the item can’t be found, the program is terminated with an exception. If the item is
inside the list bounds, the program finds the item in the list and returns it.

261What you have learned

Why are tuples called tuples?

Tuple is a mathematical term meaning “an ordered list of elements.” Python must have
gotten the name tuple from mathematics.

Should the sales program use a list to store the sales figures or a tuple?

This is a very complicated question. It really depends on what we want to do with the
sales figures. One part of me reckons that the sales figures should be stored in a tuple
because the values in a tuple can’t be changed. From a security point of view, this is a
good thing. We don’t want programmers to be able to alter sales figures they’re not
supposed to change.

However, using a tuple would make the program more complicated because it would
be harder to “build up” the items in a tuple as they are read in. This is because, as we
said, a tuple cannot be changed once it has been created. This would mean that the
program would need to create a new tuple each time a new value is read in.

There’s also the possibility that the user of the program might want us to add an “edit”
function so that she can correct sales values that were entered incorrectly. If we had
used tuples to store the values, this would not be easy to do.

Can functions return lists, instead of tuples?

Yes, they can. It’s best to regard the result of a function as something that cannot be
changed, which means that returning a tuple from a function is a good idea. But a list
could be returned instead.

Will my program run faster if I use tuples to store all the data in it?

Yes, it will. This is because tuples themselves are simpler to implement when the pro-
gram runs. However, the speed improvement would be very hard to detect, so it’s not
worth the extra effort.

Does the with construction stop objects from throwing exceptions?

No. The principle behind the with construction is that it ensures that if an object
throws an exception, the managed object is still closed down correctly. In other words,
using the with construction to manage a file object will not hide exceptions that the
object might produce, but it will make sure that if the file throws an exception the
close behavior performs.

Part 2
Advanced

programming
In this second part, we’ll look at advanced features of the Python lan-
guage that build on the fundamental program abilities we picked up in
Part 1. These features are designed to make it easier to create larger pro-
grams and map the program to the problem. You’ll also find out how to
create libraries of reusable code and how to download and install librar-

ies that others have created.

9
Use classes to

store data

266 Chapter 9 Use classes to store data

Make a tiny contacts app
Suppose one of your clients is a lawyer who wants someone to create a personal, con-
fidential contacts app. The client wants a tiny “lightweight” application to provide a
quick way of storing contact details—names, addresses, and telephone numbers—for
her important clients. You start by drawing up a storyboard for the program. Below,
you see the first menu the program will display.

Tiny Contacts

1. New Contact

2. Find Contact

3. Exit program

Enter your command:

The user enters a command number and presses Enter. If the user enters 1, the pro-
gram asks for the contact’s name, address, and phone number, and then creates a new
contact for that name.

Create new contact

Enter the contact name: Rob Miles

Enter the contact address: 18 Pussycat Mews, London, NE1 410S

Enter the contact phone: +44(1234) 56789

Contact record stored for Rob Miles

If the user enters 2, the program asks for a name, and then prints out the contact
details for the name:

Find contact

Enter the contact name: Rob Miles

Name: Rob Miles

Address: 18 Pussycat Mews, London, NE1 410S

Phone: +44(1234) 56789

267Make a tiny contacts app

If the name is not found, the program prints out a message:

Find contact

Enter the contact name: Fred Bloggs

This name was not found.

If the user enters command 3, the program finishes.

Make a prototype
The best way to show the lawyer what her program will look like is to create a pro-
totype program that behaves in the same way as the finished product. For this Tiny
Contacts program, we can do this by using some simple code that prints messages
and accepts input. The program below uses functions from the Begin to Code input
module that we created at the end of Chapter 7. We need to make sure that the
Python file BTCInput.py is in the same folder as this program when we run it.

EG9-01 Tiny Contacts Prototype

from BTCInput import *

def new_contact():

 print('Create new contact')

 read_text('Enter the contact name: ')

 read_text('Enter the contact address: ')

 read_text('Enter the contact phone: ')

def find_contact():

 print('Find contact')

 name = read_text('Enter the contact name: ')

 if name=='Rob Miles':

 print('Name: Rob Miles')

 print('Address: 18 Pussycat Mews, London, NE1 410S')

 print('Phone: +44(1234) 56789')

 else:

 print('This name was not found.')

menu='''Tiny Contacts

1. New Contact

2. Find Contact

We’re using the BTC input functions

Called to create and store a new contact

None of these values are stored when
they have been read

Called to find a new contact

Only recognize contact Rob Miles

If the name is not Rob Miles, print an error

The contacts application prototype
There are a few questions you should consider about this code.

Question: Is this code familiar?

Answer: Yes. A lot of the behaviors have been taken straight from the ice-cream sales pro-
gram that we wrote in Chapter 8. The structure of the menu used to select different functions
is the same. This structure is a very good template for any kind of menu-driven program.

Question: The values returned by the read_text functions are ignored by the program. Is
this legal?

Answer: Yes. It is legal. The read_text function is from the BTCInput library that we
created in Chapter 7. The function asks a user for a string of text and then returns that
text. You might find this surprising, but a Python program is not forced to use the value
returned by read_text. In this case, I haven’t decided how to store the data, so there’s
no point in doing anything with it.

Question: How does the program stop?

Answer: The main command loop repeatedly reads in command numbers and acts on
them. When the user enters command number 3, this causes the program to break out of
the loop, which stops it.

CODE ANALYSIS

268 Chapter 9 Use classes to store data

3. Exit program

Enter your command: '''

while True:

 command=read_int_ranged(prompt=menu,min_value=1,max_value=3)

 if command==1:

 new_contact()

 elif command==2:

 find_contact()

 elif command==3:

 break

You can use this program to enter and search for contact information. However, the
program will only display output if you search for a contact named Rob Miles, and
it doesn’t store any entered data. However, for demonstrating how the program will
work, it’s very useful. Your client agrees that the program can work like this, and you
can start building it.

Main command loop

Question: Isn’t the prototype a bit basic? Why don’t you make it store the data?

Answer: My prototype is intentionally useless. There are two reasons for this. First, there
is always the chance that the customer might take a look at the prototype and decide
that they don’t want the program after all. In that case, all the work I’ve performed on the
prototype is a waste of time. So, I try to do the minimum work possible.

Second, if the prototype works very well, there’s always the danger that the customer
might decide that they want the program there and then, rather than waiting for the pol-
ished, definitive version. This can be dangerous because the prototype might be poorly
written and may not perform well in practice.

Question: How is the telephone number stored?

Answer: The telephone number will be stored as a string of text. This is how it should
be. Although we refer to them as numbers, a telephone number will often contain other
characters such as the + character to denote international numbers and parentheses and
spaces to denote area codes.

Store contact details in separate lists
First, we must write the part of the program that reads in the contact details. In the
preceding program, this means filling in the contents of the new_contact function.
The function will request the name, address, and phone number of the contact and
then store that data somewhere. When we wrote the program to store ice-cream
sales, we used a list to hold the sales values:

sales=[]

The ice-cream sales analysis program appended each sales value to the sales list as it
was read in:

sales.append(read_int(prompt))

We could do something similar for our address book. Perhaps we could create three
separate lists, one for each of the contact items we want to store in the program:

Create the lists to store contact information

names=[]

addresses=[]

telephones=[]

269Make a tiny contacts app

270 Chapter 9 Use classes to store data

Then the new_contact function could read and store the information in each list:

def new_contact():

 '''

 Reads in a new contact and stores it

 '''

 print('Create new contact')

 names.append(read_text('Enter the contact name: '))

 addresses.append(read_text('Enter the contact address: '))

 telephones.append(read_text('Enter the contact phone: '))

Then when we want to find contact information for a specific person, we must find the
index of that person in the name list and then use that index to obtain the rest of their
contact information.

EG9-02 Tiny Contacts Three Lists

def find_contact():

 '''

 Reads in a name to search for and then displays

 the content information for that name or a

 message indicating that the name was not found

 '''

 print('Find contact')

 search_name = read_text('Enter the contact name: ')

 search_name = search_name.strip()

 search_name = search_name.lower()

 name_position=0

 for name in names:

 name=name.strip()

 name = name.lower()

 if name==search_name:

 break

 name_position=name_position+1

 if name_position < len(names):

 print('Name: ',names[name_position])

 print('Address: ',addresses[name_position])

 print('Telephone: ',telephones[name_position])

 else:

 print('This name was not found.')

Read in the name to search

Allow for capitalization variations
Count the names

Work through the names list

Tidy up the name we’re comparing
See if the names match

Break out of the loop
Move the counter on so that it refers

to the next contact position

If we didn’t reach the end of the
names list, we had a match

The find_contact function
There are a few questions we might consider about this code.

Question: How does this code work?

Answer: If you’ve ever searched your clothes drawer for a matching sock, then you’ve
used the same algorithm as the find_contact function. Sock searching involves work-
ing through the socks in the drawer to find the one that matches the one you are holding.
As soon as you find the sock, you can give up the search, put your socks on, and head for
breakfast (or lunch or dinner, depending on what time it is).

In the case of the find_contact function, the user enters the search name (the first
sock) and then the function uses a for loop to work through all the names in the name list
(the other socks) looking for a match for that name.

Question: What is the name_position variable used for?

Answer: The name_position variable is used to count through the names during the
for loop during the search for a matching name. The for loop will go around once for
each name in the list. The function needs to know the position of the name that matches
the search name so that it can use that position value to get the address and telephone
details from the lists that hold them.

Consider what would happen if the name we were searching for was the second name
in the list. The first time around the loop, the value of name_position would be 0. The
name would not match, the value of name_position would be increased by 1, and
the loop would go around again. This second time, the name would match, and so the
program breaks out of the loop, leaving the value 1 in name_position. This value can be
used to index the lists and retrieve the data for the contact.

Question: How does the function know if a name has not been found?

Answer: If you’re searching for a matching sock, you know that there is no match when
you’ve looked at all the socks in the drawer and haven’t found a match. The find_con-
tact function works the same way. If the for loop looks at all the names in the list and
doesn’t find a match, this means the name being searched for was not found. In this case,
the variable name_position will have been incremented for each of the names in the
list, meaning it will contain the length of the name list. The if construction after the for
loop tests for this situation and displays an appropriate message.

Question: What do the calls of strip and lower do?

Answer: The user of the program wouldn’t like it if the program failed to recognize
a name because you typed “rob” rather than “Rob” or accidentally entered a space at
the beginning of a name as it was entered. The program “sanitizes” the search name by
removing any “white space” at the beginning or end of the search name and then con-
verting it to lowercase. Each of the names in the list is given the same treatment before it
is compared to the search name.

CODE ANALYSIS

271Make a tiny contacts app

Question: Can we save the user from having to type in all the names when they search?

Answer: Yes, we can. Currently, the search process checks to see whether the search
name matches the entire name in the storage. The startswith function provided by the
string type returns True if a string starts with a given string. We can complete the search
when it finds a name that starts with the search string.

EG9-03 Tiny Contacts Quick Search

if name.startswith(search_name):

 # if the names match, end the loop

 break

This means that a search for “Rob” will now find the entry for “Rob Miles.” However, there
is a problem with this approach. If the user searches for “Rob” and the name list contains
both “Rob” and “Robin,” the program will only display the first matching entry. If the user
wants to find “Robin,” they will have to type in a greater number of matching characters.
However, using startsWith to match names will reduce the amount of typing the user
must do when searching for a contact.

272 Chapter 9 Use classes to store data

Use a class to store contact details
As you’ve seen, we can create a perfectly workable Tiny Contacts application by using
a list for each piece of information we want to store for our contact. However, working
with data stored in this way is not as easy as we might like. If the customer asks us to
make the program print out a list of contacts sorted in alphabetical order by name we
could do this (after all, we know about Bubble Sort) but it would be harder to write
the sort function because the program would have to swap the elements in all the lists
each time it found a pair of contacts that were in the wrong order.

If we ever add a new data item for a contact (perhaps we want to add their email
address), we would need to add a new list and then make sure that items in it were
managed correctly. Otherwise, we might find that a sorted list of contacts included
incorrect email addresses.

We want a way of holding all information about one contact. Some kind of “container”
could hold the name, address, phone number, and any other items we want to store. One
possible solution might be to use a list to store information about each customer, but this
wouldn’t make it very easy to access specific detail items. Instead, we’ll use a Python class.

You’ll hear a lot about Python classes over the next few chapters, as they are one of
the fundamental building blocks that underpin the language. You might have heard
the term “object-oriented programming.” Classes are the program constructions you

Creating a class
We can use the Python Shell to investigate how a class is created. Open the IDLE command
shell and enter the statements below.

>>> class Contact:

 pass

>>>

The first statement class Contact: starts the definition of a Python class called Contact.
When you press Enter at the end of the statement, you’ll find that IDLE automatically indents
the next line because it’s now expecting you to enter statements that are part of the class. You
saw this behavior in Chapter 7 when you entered Python functions into the Command Shell.

We’ll create an empty class and then fill it in later, so just give the statement pass as the first
and only statement in the Contact class. Then enter an empty line to tell the Command Shell
that you’ve completed your definition of the class.

Question: Why does the name Contact begin with a capital letter?

Answer: We have seen that Python variable and function names begin with a lowercase
letter. However, by convention, Python programs use initial caps for class names. Our
program will run regardless of whatever we call our classes, but we should try to follow
language conventions when creating our programs.

Question: Why does the Contact class contain a Python pass statement?

Answer: We first saw the pass statement in Chapter 8 when we used it to create empty
“placeholder” functions. We are creating an empty Contact class and then adding attri-
butes to each Contact as the program runs. A class must contain at least one statement,
so we put a pass statement in Contact.

Now we can create an instance of the Contact class. Type the following:

>>> x=Contact()

>>>

MAKE SOMETHING HAPPEN

273Make a tiny contacts app

use to create objects. Another way to look at this is that an object is an instance of
a class. You can think of a class as the plans to make a tree-house and an instance of a
class (or object) as a tree-house made from those plans.

In this chapter, we’ll focus on how you use a class to store data—how to declare a class
and then create instances of that class.

Question: This looks like a function call. Are we calling a function here?

Answer: We are not actually calling a function in this statement, but you can regard
Contact() as a call to a function that generates an instance of the Contact class and
then returns it. One reason why class names should start with a capital letter is that an
experienced programmer can look at the above statement and know instantly that it is
creating an instance of a class, not calling a function.

Question: What’s an instance?

Answer: An instance is the realization of a class. A class is a bit like a design, whereas an
instance is something built from that design. A program can contain instances of many
different types of classes. These instances are all called objects. In other words, an object is an
instance of a class.

The class design for Contact is presently empty. Not all classes are created empty; we’ll
look at some more complex classes in Chapter 10.

Now that we have our instance, we can add data attributes to it.

>>> x.name='Rob Miles'

We have seen that when a Python statement assigns a value to a new variable name, this
variable is created automatically. The same is true of data attributes. The instance x now
contains an attribute called name.

Question: What’s a data attribute?

Answer: A data attribute provides information about a class instance. In the English language,
the word “attribute” refers to a quality or feature of something we are describing. I have many
attributes. I’m tall, devastatingly good looking, and prone to telling lies about myself.

In the case of the Contact instance above, it now has data attributes called name,
address, and phone, which describe this contact.

Classes can also contain methods attributes. These are behaviors that an instance can be
asked to perform. We’ll create a method attribute later in this chapter when we create an
__init__ method for the Contact class.

A program can ask an object to provide the value of an attribute. Try the following:

>>> x.name

'Rob Miles'

>>> x.name = x.name + ' is a star'

>>> x.name

'Rob Miles is a star'

>>>

These statements display the value of the name attribute and then update it by adding a true
message to the end of the name. A program can use an attribute of a specific type (in this
case a string) anywhere it can use a variable of that type.

274 Chapter 9 Use classes to store data

275Make a tiny contacts app

PROGRAMMER’S POINT

Attributes in Python classes can be confusing
If you already know some Java, C#, or C++, you might find a Python program’s ability to
add attributes to an instance rather confusing.

In Java, C#, or C++, a detailed class design is required before any instances of a class can be
created. In other words, in these languages, you would have to specify that the Contact class
contains the name, address, and telephone number attributes before your program creates
any Contact instances. In some languages, a class design is fixed at the start of a program,
and it is not possible to add new attributes to an object while a program is running.

You should not regard this difference as evidence that these languages are better or worse
than Python, any more than you would say that cars are better than motorcycles for get-
ting you around. Both have their disadvantages and advantages.

Use the Contact class in the Tiny
Contacts program
We can use the Contact class to simplify the Tiny Contacts program. The program
now only needs a single list to hold all the contacts.

contacts=[]

The new_contact function creates a Contact instance, sets the attributes to the con-
tact information, and adds the new contact to the list of contacts.

def new_contact():

 '''

 Reads in a new contact and stores it

 '''

 print('Create new contact')

 # create a new instance

 new_contact=Contact()

 # add the data attributes

 new_contact.name=read_text('Enter the contact name: ')

 new_contact.address=read_text('Enter the contact address: ')

 new_contact.telephone=read_text('Enter the contact phone: ')

 # add the new contact to the contact list

 contacts.append(new_contact)

Create a new contact

Add the data
attributes to the

contact

Append the contact
to the list of contacts

276 Chapter 9 Use classes to store data

This function is very similar to the new_contact function that stores contacts in
separate lists. The information about the new contact is read in and assigned to data
attributes on a Contact instance. This instance is then appended to the contact list.

EG9-04 Tiny Contacts Class

def find_contact():

 '''

 Reads in a name to search for and then displays

 the content information for that name or a

 message indicating that the name was not found

 '''

 print('Find contact')

 search_name = read_text('Enter the contact name: ')

 search_name = search_name.strip()

 search_name = search_name.lower()

 # Set the result to indicate nothing found

 result=None

 for contact in contacts:

 name=contact.name

 name=name.strip()

 name = name.lower()

 # see whether the names match

 if name.startswith(search_name):

 # if the names match, set the contact

 result = contact

 # end the loop

 break

 if result!=None:

 # Found a name

 print('Name: ',result.name)

 print('Address: ',result.address)

 print('Telephone: ',result.telephone)

 else:

 print('This name was not found.')

Convert the search name to lowercase

Set result to None to indicate nothing found
Work through the contacts

Get the name from the contact for testing

Convert the name we are
comparing with to lowercase

 Do we have a match to the name?

Record the contact that was found

Stop searching

Test whether the result has been
set to a contact

Display the details

Tell the user nothing was found

Duplicate names
There is a serious bug in the system we’ve created. It’s possible to create a new contact with
the same name as an existing one. Because the “replacement” contact will be stored further
down the array than the original contact, it will never be used. The program will always find
the original customer first, which would result in one of our array elements being wasted. You
might like to consider how you could modify the program to eliminate this problem.

WHAT COULD GO WRONG

PROGRAMMER’S POINT

Look for problems when you receive the specifications
When you talk to your lawyer client about the Tiny Contacts application (see “Make a tiny
contacts app” earlier in this chapter), there is no guarantee that problems such as duplicate
contact names will ever be discussed. It is your job as a programmer to consider the ways a
system can go wrong and to add extra behaviors to deal with these. There are some ways

277Make a tiny contacts app

The class-based find_contact function
Question: How does this code work?

Answer: This code looks for contacts that match the search name. In this respect, it is
very similar to the find_contact function that searched through a list of names. How-
ever, rather than using an integer to hold the index of the result information in the var-
ious lists, this function uses a variable called result that is set to the Contact instance
that has a matching name.

 Question: What does the value None mean?

Answer: The find_contact function needs a way to represent the situation in which
there is no contact with the name being sought. Python provides the symbol None to
represent a value meaning nothing. The result variable is initially set to None (because
no matching contact has been found). If the for loop finds a matching Contact, it will
set result to this contact, replacing the None value. If the find_contact function
reaches the end of the list of contacts without finding a matching name, the value of
result will still be None. The function tests for this, and either displays the found contact
or a message indicating that nothing was found.

CODE ANALYSIS

278 Chapter 9 Use classes to store data

to handle duplicate account names, but you need to find out how the client wants the pro-
gram to behave. The worst thing you can do in a situation like this is to assume you know
what the customer wants the system to do, because doing so will almost certainly mean
your solution will behave incorrectly when things go wrong.

Edit contacts
Let’s assume your customer is pleased with her Tiny Contacts data storage program
and starts using it a lot. However, as is often the case with systems like these, she soon
discovers a limitation that she hadn’t thought of when she agreed to the specifica-
tion. She would like a way to edit the contact information. Currently, if the telephone
number of a contact changes, there is no way she can update the information in the
contact store. Once entered, a record cannot be changed. Here’s how you might write
out the specification for the new behaviors:

Tiny Contacts

1. New Contact

2. Find Contact

3. Edit Contact

4. Exit program

This is the new menu for the Tiny Contacts program. It has acquired an additional
menu item, Edit Contact. When the user selects this item, she can then search for a
contact and edit it in the following way.

Edit contact

Enter the contact name:Rob

Name: Robert Miles

Enter new name or . to leave unchanged: .

Enter new address or . to leave unchanged: .

Enter new telephone or . to leave unchanged: +44 (1482) 465079

Once the contact has been found, the user can enter a new value for each of the data
items about the contact, or she can enter a period (.) to indicate that the entry is to be
left unchanged. In the above example, the name and address were unchanged and a
new telephone number was entered. If no contact is found with the required name,
the edit function displays an appropriate message:

This name was not found.

279Make a tiny contacts app

Refactor the Tiny Contacts program
In Chapter 8, we restructured the Ice Cream analysis program and created functions
that let us reuse their behaviors in the program. At the time, I said that you refactor a
program when your understanding of a program improves, and you hit upon a better
way of arranging the code. You might also need to refactor your solution if the pro-
gram specifications change.

We now have two features in our program that search for a contact by name. The
program searches for a contact so that it can be displayed, and it also searches for a
contact in order to edit that contact. You might think that an effective way to create
the edit_contact function would be to copy the find_contact function and just
change the print behavior into an edit behavior. This would work, but it is not a good
idea, because both functions would contain a contact search behavior. If the user asks
for an improvement to the way that search works, or if we find a bug in the way the
search works, we must remember to change the search code in both functions. Other-
wise, your customer will complain that the behavior of her program is inconsistent.

The refactoring we’ll do involves creating a new function that we’ll call find_contact.
We’ll then rename the original function find_contact to display_contact because
that is a better description of what it actually does.

def find_contact(search_name):

 '''

 Finds the contact with the matching name

 Returns a contact instance or None if there is

 no contact with the given name

 '''

 search_name = search_name.strip()

 search_name = search_name.lower()

 for contact in contacts:

 name=contact.name

 name=name.strip()

 name = name.lower()

 # see whether the names match

 if name.startswith(search_name):

 # return the contact that was found

 return contact

 # if we get here, no contact was found

 # with the given name

 return None

 This is the name being searched

Convert the name we’re searching for to lowercase
Work through the contacts

Convert this contact name to lowercase for searching

See whether we have a matching contact

Return the matching contact

If no matching name was found, return None

The refactored find_contact function
If you look closely at this version of the find_contact function, you’ll find that it is very
similar to the previous version. However, some things are different.

Question: Why does the function contain two return statements?

Answer: Although the function contains two returns, only one of them is obeyed for
a given name search. Either the code in the for loop finds a match for the name of a
contact, in which case the function returns the contact that was located, or the name
supplied as a parameter is not matched by any of the contacts in the list. If the name is
not matched, the for loop completes, and the program returns a None value to indicate
that nothing was found.

Question: What would happen if another program tried to use the return value of the find_
contact function, and the find_contact function had returned None?

Answer: The find_contact function returns None if no contact is found with a match-
ing name. If a program tries to use this value, an exception is raised.

c=find_contact('Mysterious X')

print(c.address)

The code above tries to print the address of the contact called Mysterious X. If this con-
tact doesn’t exist, the function find_contact will return None. When the second state-
ment tries to print out the address attribute of c, the program will fail with an exception.

 print(c.address)

AttributeError: 'NoneType' object has no attribute 'address'

It’s important that users of the find_contact function check to see whether it has
returned a contact.

CODE ANALYSIS

280 Chapter 9 Use classes to store data

281Make a tiny contacts app

Contact objects and references
Now that we have a find_contact function, we need to consider just what it returns to
the caller. In other words, we need to understand just what happens in this statement:

rob=find_contact('Rob Miles')

The statement calls find_contact, which will search for a contact with the name Rob
Miles. If a contact with this name is present in the contacts list, it is returned. However,
what gets returned by find_contact is a reference to the contact that contains the
name Rob Miles. You can think of a reference as a tag that is tied to a particular object
in memory. Figure 9-1 shows how this might look.

rob

Contact

Name: Rob Miles
Address: 18 Pussycat Mews, London, NE1 410S
Telephone: +44(1234) 56789

Figure 9-1 Contact class and reference

The tag and the object in memory are separate things. A tag can be connected to a dif-
ferent object by an assignment. We can also create multiple tags (references) that all refer
to the same object, simply by assigning a new variable to the reference. Figure 9-2 shows
what happens if we create a new variable called test and assign it to the variable rob.

test=rob

rob

Contact

Name: Rob Miles
Address: 18 Pussycat Mews, London, NE1 410S
Telephone: +44(1234) 56789

test

Figure 9-2 Two references to the same contact

Understanding lists and references
Figure 9-4 illustrates how lists and references work. It shows a Tiny Contacts data store with
three contacts registered. Each of the tags in the contacts list refers to a different Contact
instance that is held somewhere in memory. We can build our understanding of lists and
references by considering some questions about this arrangement.

Question: The diagram contains four references. How many data objects does it contain?

Answer: There are three data objects for “Rob Miles,” “Joe Bloggs,” and “Fred Smith.”
There are four references, but two of the references refer to the same object.

CODE ANALYSIS

282 Chapter 9 Use classes to store data

We now have two references that both refer to the same object in memory. This
means that changes to the variable test will affect the variable rob because they
are both the same object. Figure 9-3 shows the effect of the change performed by
the statement below. The name attribute of the contact held in memory has been
updated to the new name.

test.name='Robert Miles Man of Mystery'

rob

Contact

Name: Robert Miles Man of Mystery
Address: 18 Pussycat Mews, London, NE1 410S
Telephone: +44(1234) 56789

test

Figure 9-3 Changing the contents of an object

Now that we understand how references work, we can start to see how lists work. An
item is never held “in” a list. Instead, the list holds a collection of references to list items.

Contact

Name: Fred Smith
Address: 1605 Main Street, New York
Telephone: (560) 567-5209

0

Contact

Name: Joe Bloggs
Address: 2312 Pine Street, Seattle
Telephone: (453) 545-1232

1

Contact

Name: Rob Miles
Address: 18 Pussycat Mews, London, NE1 410S
Telephone: +44(1234) 56789

2

rob

CONTACTS

Figure 9-4 Lists and references

Question: What is the name of the contact at the beginning of the list?

Answer: The contact at the start of the list has the index value 0 (because that is the
index of the element at the beginning of a list). If you look at the top left tag in the list in
Figure 9-4, you can follow the arrow from this tag to find that the object it refers to has
the name “Joe Bloggs.” We don’t really know where this contact is held in the memory
of the computer, but we do know that the tag at location 0 in the contacts list contains a
reference referring to a contact object with the name attribute “Joe Bloggs.”

Question: What would happen if the program performed the following statement?

contacts[0]=contacts[1]

283Make a tiny contacts app

Answer: Remember that a number in brackets after a list name is the index number to
an element in the list. So, we are making the element at the beginning of the list (the one
with index 0 and the name of “Joe Bloggs”) equal to the element with index 1 (the one
with the name “Fred Smith”).

Both these elements would now refer to the contact with the name “Fred Smith.” If a
program worked through the contacts list using a for loop, it would find the “Fred Smith”
contact twice.

However, I can’t think of a reason why you would ever do this. Not only does it make an
item in the list appear twice, but it also has the effect of making it impossible to use the
contact with the name “Joe Bloggs,” because there is no longer a reference to this object.
The Python system will notice that there are no references to the object and it will be
automatically removed. This process is called Garbage Collection.

Discovering “Immutable”
Everything in Python is an object. In other words, everything is an instance of a class. The
value 30 is an instance of the int class. Open IDLE, and we’ll investigate how this works.

>>> age=30

>>>

MAKE SOMETHING HAPPEN

284 Chapter 9 Use classes to store data

References make it much easier to work with large data objects. If we decide to
produce a list of contacts sorted in alphabetical order by contact name, the program
will not move any objects in memory; instead, the program just has to sort the list of
references. If a function wants to return an object to a caller (as the find_contact
does) there’s no need to copy a large lump of data; instead, a reference to the object
can be returned.

Health warning: This next part covers one of the most painful things about Python
that you must understand. It might take several attempts to grasp. If you find it diffi-
cult to understand, you are not alone. If it starts to get confusing, just back off, have a
cup of coffee (or a good night’s sleep), and then come back to it.

Type in the above statement and then consider what you have made. We’ve said that such a
statement creates a variable called age and that the variable is set to the value 30. Now, we
can visualize what is happening.

age

int

30

If you’re unsure, you can always ask Python:

>>> type(age)

<class 'int'>

>>>

The built-in function type accepts a reference as an argument and then returns the type
of object to which the reference refers. So, we can be sure that the variable age refers to an
instance of the type int. Now, let’s do some more Python:

>>> temp=age

>>>

The above statement creates a new variable called temp, which is equal to age.

age

int

30

temp

285Make a tiny contacts app

From the Tiny Contacts diagram in Figure 9-4, you know that the variables age and temp
now refer to the same instance of int. So far, so good. However, what happens when we
assign a new value to the variable temp?

>>> temp=99

>>>

We’ve stored a new value in temp. Because temp and age both refer to the same thing, you
might think that this would change the value in age. Let’s see:

>>> age

30

>>>

The value of age has not changed. However, a new instance of int has been created, and
temp has been made to refer to it:

age

int

30

temp

int

99

This happens because the int data type is immutable. Rather than changing the contents of
an instance of an immutable data type, Python instead creates a new instance of that type
with the changed value. The Python string type is also immutable. If we perform the same
actions with string values, we’ll see exactly the same behavior as above:

>>> name='Rob'

>>> temp=name

>>> temp='Fred'

>>> name

'Rob'

>>>

286 Chapter 9 Use classes to store data

The above sequence shows that assigning the string 'Fred' to the variable temp does not affect
the value of name because these variables are of type string, and the string type is immutable.

Question: Why does Python use immutable data types?

Answer: For some procedures—such as working with simple numbers—it’s best to have
variables that behave as values. Consider the following statements.

pi=3.1415

x=pi

x=99.99

We don’t want this sequence of statements to change the value of pi, which is what would
happen if the floating-point data type was not immutable.

287Make a tiny contacts app

PROGRAMMER’S POINT

Programming languages work with values differently
If you look at other programming languages, you’ll find that many of them address this
issue in some manner. Programmers like using references because references make it very
easy to work with large data objects without having to move the objects around in mem-
ory. However, programmers also like the ability to perform simple data manipulation with
types such as int bool, float, and string.

If you’re a C# programmer, you know about value types. If you have learned some Java,
you’ll have heard of primitive types. The Python language makes the int, bool, float, and
string types immutable so that they can be manipulated as if they were simple values.

Edit a contact
After that digression about references and immutable types, we can now consider
how to edit contact information. We know that once a program has a reference to a
contact object, it can read and modify any of the data attributes of the contact.

The program we created is designed to make it easy for the user to change just one
element of the contact.

288 Chapter 9 Use classes to store data

Edit contact

Enter the contact name:Rob

Name: Robert Miles

Enter new name or . to leave unchanged: .

Enter new address or . to leave unchanged: .

Enter new telephone or . to leave unchanged: 123-456-7890

Our program must read a string from the user for each of the items in the contact.
If the content of the string is not a single period (.), the string replaces the item in
the contact with the text typed by the user (in this case 123-456-7890). In the above
exchange, only the telephone number of the contact would be changed. The name
and address would be left as they were.

EG9-05 Tiny Contacts with Editor

def edit_contact():

 '''

 Reads in a name to search for and then allows

 the user to edit the details of that contact.

 If there is no contact, the function displays a

 message indicating that the name was not found

 '''

 print('Edit contact')

 search_name=read_text('Enter the contact name:')

 contact=find_contact(search_name)

 if contact!=None:

 # Found a contact

 print('Name: ',contact.name)

 new_name=read_text('Enter new name or . to leave unchanged: ')

 if new_name!='.':

 contact.name=new_name

 new_address=read_text('Enter new address or . to leave unchanged: ')

 if new_address!='.':

 contact.address=new_address

 new_phone=read_text('Enter new telephone or . to leave unchanged: ')

 if new_phone!='.':

 contact.telephone=new_phone

 else:

 print('This name was not found.')

Read the name to search
Search for the name in the contacts

find_contact returns None if
the contact was not found

If the name is new, store it

 If the address is new, store it

If the phone number is new, store it

If we get here, find_contact returned None

Missing attributes
The edit_contact function calls the find_contact function to find a contact with the
given name. We’ve seen that find_contact will return None if it can’t find a contact with
a matching name, but what would happen if the object returned did not have an expected
attribute? For example, find_contact might return an object that has a name attribute but
not an address attribute. In this case, the program will fail with an exception when it runs:

AttributeError: 'Contact' object has no attribute 'address'

Some programming languages, such as Java, C#, Visual Basic, and C++, check for this kind of
mistake before the program runs. Python does not. If you incorrectly type an attribute name
(for example, you try to use an attribute called adress), then the program will start running
and then fail at the statement that uses the incorrectly named attribute.

WHAT COULD GO WRONG

Save contacts in a file using pickle
Currently, the Tiny Contacts program does not save the contacts to a file. This means
that when the program stops, all the data is lost. In Chapter 8, we saw how to read and
write lines of text to a file, and we used the load and save behaviors for the ice-cream
sales figures. We could use the same commands to write out names, addresses, and
telephone numbers. However, Python provides a much better method of storing large
data structures, called pickling.

If you have a large amount of vegetables, you can preserve them with pickling. Python
provides commands that let you “pickle” the contents of a variable. Pickling is a clever
process because it works with complicated structures such as lists. It stores the data
in a binary file, and binary files contain values that make sense to the program that

289Make a tiny contacts app

One very important thing to take away from this discussion of editing data is that edit-
ing does not remove a contact from the list, edit it, and then “put it back.” The find_
contact function returns a reference to the actual data object itself. Any changes to
this object will occur on the “live” data. If you want to create a “cancel” feature that
allows the user to abandon changes before saving them, you’ll need to make the edit
function work on a copy of the data that can be restored to the contact if the user
abandons any changes they’ve made.

290 Chapter 9 Use classes to store data

created them. The functions that perform pickling and unpickling are held in the
pickle library. First, the program needs to import this library.

import pickle

Pickled data is held in a binary file. Because you’ve used a computer, you’re accus-
tomed to working with different kinds of files, such as JPEGs for images, MP3s for
music, ZIP files for compressed data, and so on. Your computer’s operating system
can identify the type of the file by the file extension part of the file name, which is
expressed as a set of extra letters on the end of the file name. A picture might be
called “myhouse.jpg,” and a music file might be called “track1.mp3.” The operating
system contains a list of file extensions and the associated programs that can work
with them so that when you select a file with the file extension “.jpg,” it will be opened
by a picture viewer program.

The file extension “.txt” means text file. The “.py” extension also means text, but the
text is a Python program. Text files contain values that map to specific characters. We
saw how this mapping works in “Data and information” in Chapter 2. The important
thing to remember about files, as far as the computer operating system is concerned,
is that all files are treated similarly.

A program tells Python to treat a file as a binary file by adding a “b” to the mode
string that controls how the file is to be opened.

output_file = open('contacts.pickle','wb')

The above statement opens a file called contacts.pickle. The file will be opened for
use as a binary file (that’s what the b on the end of the mode string means). The file
name has been given the .pickle extension to identify it as a file that contains pickled
Python data. A program can use the dump function to pickle the contacts list and store
it in a file:

pickle.dump(contacts,out_file)

The above statement writes the entire contacts list to the specified file connection. All
the names, addresses, and telephone numbers are stored, and this statement will work
correctly whether there are 10 contacts or 100 contacts.

 Variable to be pickled
 File to save the pickled data

291Make a tiny contacts app

You might be interested to see what the contents of a picked file look like if we open
them with a text editor. Figure 9-5 shows the contents of a pickle file that contains a
single contact entry. You can see that some of the elements are recognizable text, but
some are just strange characters. If we changed any of the characters in the pickled
file, these changes might be detected and Python may refuse to load the file, but it’s
important to note that pickling data doesn’t store the data securely, any more than
writing data into a text file does.

Figure 9-5 Pickled text

The save_contacts function saves the contacts into a file. The name of the file to use
is supplied as a parameter to the function. The function uses the with construction
we saw in Chapter 8, so there’s no need for the program to close the file, as that will
happen automatically.

def save_contacts(file_name):

 '''

 Saves the contacts to the given file name

 Contacts are stored in binary as a pickled file

 Exceptions will be raised if the save fails

 '''

 print('save contacts')

 with open(file_name,'wb') as out_file:

 pickle.dump(contacts,out_file)

This function does not deal with any exceptions that might be raised if the save pro-
cess fails, but I like this. I prefer that a program crashes trying to save something rather
than leaving me with the impression that the save has worked when it has not. The
code that calls save_contacts should deal with exceptions that the save_contacts
function might raise.

Loading data using pickle
A couple questions about the load_contacts function are worth considering.

Question: What does the “global contacts” statement do? Why do we need it only in the
load function and not the save function?

Answer: The load_contacts function will be used to change the value in the contacts
variable. The contacts variable refers to the list of all the contacts being held in the Tiny
Contacts program. The save_contacts function must use the reference to find the list.
However, the load_contacts function will be changing this value. As we saw in Chapter
7, a function can always read a global variable, but if it wants to write into a global vari-
able, it must explicitly identify that variable by declaring it as global.

Question: How does the pickle load function know what kind of data to make when loading?

Answer: If you look closely at the pickled text in Figure 9.4, you’ll see that it contains
both the data for the attributes ('Rob Miles') but also the names of the attributes. The
file also contains the name of the class being created. When the pickled file is loaded, the
load function looks for classes with the matching name in the program that’s loading the
data and uses those matches to create the new instances. It is therefore important that
the Contact class has been defined before pickle is used to load any files that contain
contact data.

CODE ANALYSIS

292 Chapter 9 Use classes to store data

Load contacts from a file using pickle
The pickle library provides a function called load, which we’ll use to read back the
pickled data. The load process is the reverse of save. The binary file is opened, and
then the data is reconstructed. The load function in the pickle library needs only to be
given the connection to the file.

def load_contacts(file_name):

 '''

 Loads the contacts from the given file name

 Contacts are stored in binary as pickled file

 Exceptions will be raised if the load fails

 '''

 global contacts

 print('Load contacts')

 with open(file_name,'rb') as input_file:

 contacts=pickle.load(input_file)

Changes will be made to the value of contacts

Version control
Programmers call tools like pickle serializers because they convert a data structure into a
serial stream that can be sent to another computer or stored in a file. However, there is a
problem with this process that you must keep in mind: version control. If I change the design
of the Contact class (perhaps to add an email attribute to each contact), this might break all
the pickled files that I have stored previously because the older files would not include the
email attribute. The only way to resolve this is to store version numbers along with the pick-
led data so that your program can migrate the data from one version to another.

WHAT COULD GO WRONG

Add save and load to Tiny Contacts
Now that we have the functions to perform the save and load, we must add them to
the Tiny Contacts program. We could load the contacts data when the program starts
and save it when the user exits the program.

EG9-06 Tiny Contacts with Load and Save

file_name='contacts.pickle'

try:

 load_contacts(file_name)

except:

 print('Contacts file not found')

 contacts=[]

while True:

 command=read_int_ranged(prompt=menu,min_value=1,max_value=4)

 if command==1:

 new_contact()

 elif command==2:

 display_contact()

 elif command==3:

 edit_contact()

 elif command==4:

 save_contacts(file_name)

 break

This is the name of our contacts file

Try to load the contacts

Deal with exceptions raised if the load fails
Create an empty contacts list

Command loop

Save the contacts if the user gives the exit command

293Make a tiny contacts app

294 Chapter 9 Use classes to store data

Saving and loading contacts
A few questions about this code are worth considering.

Question: What happens if the load_contacts function raises an exception?

Answer: The load_contacts function will raise an exception if the contacts file can’t
be found, or if the load function in pickle fails. If this happens, the program catches the
exception, prints a message, and then creates an empty contacts list. This should only
happen once, when the program first runs and finds no contact file.

Question: Why does the program not catch exceptions raised by save_contacts?

Answer: Perhaps it should. My thinking is that if the program crashes, the user will have
no doubt that the contacts have not been saved. You might find it useful to modify this
code to display a message rather than just fail in this way.

Question: Why does the program use a variable for the file name of the pickled file?

Answer: The contacts are held in a file called contacts.pickle. This file name is used
in calls to save_contacts and load_contacts. Rather than inserting a string literal
('contacts.pickle') into each call, I’ve created a variable called file_name that is
used instead. The thinking behind this is that if I want to use a different file to hold the
contacts, I only need to change the value of the file_name variable, rather than having
to find the places in the program where the string is used.

CODE ANALYSIS

Set up class instances
Currently, the Tiny Contacts program adds data attributes to a Contact instance after
the instance is created.

new_contact=Contact()

add the data attributes

new_contact.name=read_text('Enter the contact name: ')

new_contact.address=read_text('Enter the contact address: ')

new_contact.telephone=read_text('Enter the contact phone: ')

This is the sequence of code in the new_contact function that creates a new Contact
instance and then adds the name, address, and telephone attributes to that instance.
This code works, but there is the potential for problems if one of the attributes is not

Create an “empty” Contact

Add each data attribute to
the contact

Create an initializer
Open IDLE and create a class that contains an initializer to find out how it works.

>>> class InitPrint:

 def __init__(self):

 print('you made an InitPrint instance')

>>>

Type in the above class definition. It creates a class called InitPrint which contains an
initializer that just prints a message. Be careful to put two underscores before and after the
word init, and to add a single parameter called self, exactly as shown above. The last line of
the class is an empty line.

Question: The initializer looks remarkably like a function. Why is that?

Answer: You can think of the initializer as a function that is called when an instance of a
class is created.

>>> x=InitPrint()

you made an InitPrint instance

>>>

MAKE SOMETHING HAPPEN

295Make a tiny contacts app

added to the class or an attribute name is misspelled. The program would contain
Contact values that would not work correctly. It would be nice if we could create
a Contact and initialize it at the same time.

It turns out that we can do this by adding an initializer method to the Contact class.
A class can contain method attributes as well as data attributes. You can regard a
method attribute as a function that is held as part of the class. Later, we’ll use method
attributes that will allow objects to do things for us. For now, however, we’ll add an
initializer method to the Contact class and use it to set up each instance.

The Python initializer method
The Python initializer method is held inside a class and has the name __init__ . This is
a special name that Python uses specifically for the initializer in a class.

Type in the code above, which makes an instance of the InitPrint class and sets the
variable x to refer to it. When the instance is created, the __init__ method runs. Cur-
rently, this just prints a message.

Question: How is the __init__ method made to run?

Answer: I don’t really know. All I know is that the method runs each time I make a new
instance of the InitPrint class. If I used a loop to create 100 instances of InitPrint, I
would find that message printed out 100 times. My program will never call the __init__
method directly; instead, it runs as a consequence of the creation of an object. If you cre-
ate another instance of the InitPrint class, you’ll find that the message is printed again.

So now we know that the __init__ method runs when an instance of a class is created. Now
we need to figure out how we can send information into an instance when we created it.

>>> class InitName:

 def __init__(self,new_name):

 self.name=new_name

>>>

The initializer in the class InitName has an additional parameter, called new_name. The ini-
tializer no longer prints a message. Instead it performs what looks like an assignment, using
the parameter called self to identify the target of the assignment. Understanding what self
means is key to understanding how methods in classes work.

You can think of self as “a reference to the object that is running this method.” In other
words, when the initializer begins running, the value of self is set to refer to the instance that
is being created. So, the assignment statement takes the value of new_name and assigns it to
an attribute called name, which is added to the instance.

The self parameter is always the first parameter of a method in a class. We never set this
parameter ourselves; instead, we use it in methods to get a reference to the object in which
the method is running. Any other parameters work in the same way as parameters to func-
tions. We can see this in action when we create a new instance of the IinitName class.

>>> x=InitName('fred')

>>>

When we create a new instance of the InitName class, we can pass in an argument, which is
the name to be assigned to this instance. This value is used to set the name attribute of the
new Contact instance. After the initializer has run, we will find that the variable x (which is
referring to an instance of the InitName class) now has an attribute called name.

296 Chapter 9 Use classes to store data

>>> x.name

'fred'

>>>

Once we have provided an initializer for a class, this becomes the only way that we can create
an instance of that class. If we try to create a new InitName instance without a name argu-
ment, we will find that Python will generate an error:

>>> y=InitName()

Traceback (most recent call last):

 File "<pyshell#48>", line 1, in <module>

 y=InitName()

TypeError: __init__() missing 1 required positional argument: 'name'

This is a great way of making sure that an object is only ever created with an appropriate set
of attributes.

We can create an initializer for the Contact class that accepts three parameters along
with self.

class Contact:

 def __init__(self,name,address,telephone):

 self.name=name

 self.address=address

 self.telephone=telephone

Initialize with four parameters
Create attributes for the parameters

Parameters and the __init__ method
If you’ve read the above code sample properly, you should have at least one or two questions
about it.

Question: It looks like you’ve written the assignments in the initializer so that a value is
assigned to itself. What’s going on?

Answer: Consider statements like this:

self.telephone=telephone

CODE ANALYSIS

297Make a tiny contacts app

It seems that I’m assigning the value of telephone to itself. But this is not the case. The
item on the right side is the parameter (which I’ve called telephone), and the item on
the left is an attribute of the object referred to by self (which is called self.telephone).
These are two different variables.

To understand why these are two different variables, you must know that Python uses
namespaces when finding variables. A namespace is “a space in which names have a
unique meaning”. One namespace is the namespace of parameters and variables local
to the __init__ method. Another namespace is that of the attributes of an instance.
Two different namespaces can contain variables with the same name, just like two books
can each have a page called “Contents.” If we specify the namespace (like saying “The
contents page in ‘Begin to Code with Python’”), Python can work out the location of the
variable. The name self.telephone refers to a variable called telephone in the object
referred to by self. The name telephone, in the __init__ method refers to the param-
eter telephone.

When I created the class InitName, I broke this rule so that you could see how the value
of the parameter new_name was transferred into the name attribute of the instance being
initialized. However, it makes sense to give the parameters the same name as the attri-
butes in a class, and you’ll see why in the next section.

Question: What happens if the user of the constructor supplies silly arguments to it?

Answer: Currently, the initializer doesn’t perform any validation of the parameters it
receives. In other words, the value of the name parameter could be an empty string, or a
number, or even the value None and the Contact would still be initialized. If you wanted,
you could add data validation to the initializer so that it checks the validity of the param-
eters being used to create the object and raises an exception if it doesn’t like them.

You might do this if you’re writing a super-secure banking application. However, for this
program, I think it’s reasonable to assume that users of the class will behave themselves.
In any development, you must balance the benefits of the error checking against the cost
of writing extra code. You can tell the bank that you’d be happy to write a version with
super-secure classes, but you must make sure you get paid for adding the extra security.

Now our program can create a new contact and set all the values of that contact at the
same time:

rob=Contact(name='Rob Miles',address='18 Pussycat Mews, London, NE1 410S',

 telephone='+44(1234) 56789')

The above statement creates a new Contact and sets the reference rob to refer to it.
I’ve used keyword arguments to explicitly identify the different values being set up in

298 Chapter 9 Use classes to store data

299Make a tiny contacts app

the class. Each keyword maps directly onto the attribute in the class, which makes it
easy to understand what is being set up.

EG9-07 Tiny Contacts with initializer

def new_contact():

 '''

 Reads in a new contact and stores it

 '''

 print('Create new contact')

 # add the data attributes

 name=read_text('Enter the contact name: ')

 address=read_text('Enter the contact address: ')

 telephone=read_text('Enter the contact phone: ')

 # create a new instance

 new_contact=Contact(name=name,address=address,telephone=telephone)

 # add the new contact to the contact list

 contacts.append(new_contact)

This version of new_contact reads in the name, address, and telephone values from
the user and then uses them to create a new Contact value that is appended to the list
of contacts in the Tiny Contacts application.

Use default arguments in an initializer
We saw default arguments in Chapter 7 when we created a text input function that
used a default prompt (“Please enter some text”) if the caller didn’t specify a prompt
when the function was called. We can do something similar with the initializer.

class Contact:

 def __init__(self,name,address,telephone='No telephone'):

 self.name=name

 self.address=address

 self.telephone=telephone

It is now possible to create a Contact instance without giving a telephone number.

rob=Contact(name='Rob Miles',address='18 Pussycat Mews, London, NE1 410S')

The telephone number for the address would be set to 'No telephone'.

Creating a dictionary
We can use the Python Shell to investigate how a dictionary is created. Open the IDLE com-
mand shell. We’ll create a dictionary that a coffee shop could use to keep track of prices. The
key will be the name of the drink, and the item we are seeking is the price of that drink.

>>> prices={}

>>>

Enter the statement above. It creates a dictionary with the name prices. Remember to use
braces, { and }, to tell Python that a dictionary is being created.

Currently, the dictionary is empty. We can add an item to the dictionary by giving the key and
the value to be stored.

>>> prices['latte']=3.5

>>>

MAKE SOMETHING HAPPEN

300 Chapter 9 Use classes to store data

Dictionaries
In the previous chapter, we discovered how to use lists and tuples to create variables
that can store collections of values. Python has another collection mechanism called
a dictionary. A program can store a collection of data in a dictionary and then easily
locate a particular item in the dictionary by using a key. The name dictionary is very
appropriate, as this is exactly the tool we use when we look up the meaning of a word
we haven’t heard before. The word is the key, and the dictionary description is the
item for which we are searching.

From a Python programming perspective, you can think of a dictionary as a list that is
indexed by a key rather than a letter or number. To access an element in a dictionary,
we could say “Give me the element with the key of ‘rob.’” To access an element in a
Python list, we could say “Give me the element with the index of 2.”

This statement adds an element to the prices dictionary. The element has the key 'latte'
and the value 3.5. The program can use the key 'latte'to find the value:

>>> prices['latte']

3.5

>>>

The use of square brackets in the above statements might make you think of a list. When we
use a list, we provide an index value to identify the element we want. In a dictionary, we use
the key to find the element we want. We can change the value in a dictionary at any time:

>>> prices['latte']=3.6

>>>

This statement slightly increases the price of a latte.

The key must be given exactly. Try misspelling the key to see what happens:

>>> prices['Latte']

Traceback (most recent call last):

 File "<pyshell#3>", line 1, in <module>

 prices['Latte']

KeyError: 'Latte'

As you might expect, an exception is raised. We can check to see whether a dictionary con-
tains a key:

>>> 'latte' in prices

True

>>>

We can add extra items to the dictionary at any time, and we can print the entire dictionary:

>>> prices['espresso']=3.0

>>> prices['tea']=2.5

>>> prices

{'latte': 3.6, 'espresso': 3.0, 'tea': 2.5}

>>>

301Dictionaries

The first two statements add two more drinks to the dictionary. The third statement views the
dictionary. We have seen how to add items to a dictionary, but we can also create one with a
single statement.

>>> prices={'latte': 3.6, 'espresso': 3.0, 'tea': 2.5, 'americano':2.5}

>>>

This statement creates a prices dictionary for four types of drinks.

Dictionary management
The form of a dictionary element is “key:item”. The value on the left is the key that will
be used to locate the item. In this case, the key is a string and the item is a number, but
we can use other types, too.

access_control={1234:'complete', 1111:'limited', 4342:'limited'}

This statement creates a dictionary to control access to a burglar alarm system. The user
will enter their access code and the program will use the code as a key to the access_
control dictionary. The item that matches the key will determine whether the user has
complete or limited access. The access code 1234 gives the user complete access. The
access codes 1111 and 4342 give the user limited access. If the key is not found in the
access_control dictionary, the user is not allowed any access to the system.

EG9-09 Alarm access control

access_code=read_int('Enter your access code: ')

if access_code in access_control:

 print('You have', access_control[access_code], 'access')

else:

 print('You are not allowed access')

If we need to delete a dictionary entry (perhaps we want to remove an alarm code
value because we want to change that code to a different one) the Python del state-
ment can be used to delete an entry from the dictionary:

del(access[1111])

Read in the access code
Check whether the dictionary contains this code value

Display level of access

No access allowed

302 Chapter 9 Use classes to store data

303Dictionaries

This will delete the access code entry with the key 1111. The del statement can also
be used to delete an entry from a list. If the entry being deleted is not found, the del
statement will raise an exception.

Return a dictionary from a function
A program can use a dictionary as a simple lookup table, but a dictionary is useful in
a great many other contexts, too. Rather than returning a tuple as a result, the “Pirate
Treasure” function from Chapter 8 could instead return a dictionary:

EG9-08 Pirate Treasure Dictionary

def get_treasure_location():

 '''

 Get the location of the treasure

 returns a dictionary:

 ['start'] is a string naming the landmark to start

 ['n'] is the number of paces north

 ['e'] is the number of paces east

 '''

 # get the location from the pirate

 return {'start':'The old oak tree','n':20,'e':30}

location=get_treasure_location()

print ('Start at',location['start'], 'walk',location['n'],'paces north',

'and', location['e'],'paces east')

The get_treasure_location function above returns a dictionary that contains three
elements, one for each item being returned. This result is easier to understand than a
tuple because each of the elements in the dictionary has a name (the value of the key
string) rather than an index value.

Use a dictionary to store contacts
We could use a dictionary to store the contacts in the Tiny Contacts program. The key
used to locate a Contact held in the dictionary would be the name of that Contact.

contact_dictionary = {}

rob = Contact(name='Rob Miles',address='18 Pussycat Mews',

telephone='+44(1234) 56789')

contact_dictionary[rob.name] = rob

Create an empty dictionary

Create a new contact
Add the contact to the dictionary

using the name as the key

Create a data storage app
The Tiny Contacts program is a useful template for any kind of program that stores data and
lets a user work with it. You can even add some of the sorting and data-processing features
from the ice-cream sales program to make applications that not only store data but let you
do interesting things with it.

You could create a music track storage program that lets you search for tracks based on the
length of the track. The program could suggest tracks that could be combined to fill an exact
amount of time or give the total play time of a specific playlist. You’d have to create a class
that could hold the track information, store the information in a list, and then create some
behaviors that would search through and process the data.

Or, you could make a recipe storage program that stores lists of ingredients and preparation
details. Remember that one of the items in a class could be a list of strings, which could be the
steps performed to prepare the recipe.

MAKE SOMETHING HAPPEN

304 Chapter 9 Use classes to store data

The program above shows how to create a dictionary and add a contact to it. A
program can then find a contact by using their name as the key in the dictionary. The
statement below finds the contact that has just been stored.

c = contact_dictionary['Rob Miles']

This would work, but the user would have to type in the full name of a contact for
the name to be used as a key. On the other hand, the find_contact function we saw
above uses the startswith method to match the search string with a name in the list.
Our user likes the way she can find a name that starts with a string, rather than requir-
ing a complete match. She can enter ro as the search term and the program will return
the contact details for Rob Miles. That would not be possible with a dictionary.

However, if we have an application in which the key can be a unique value—for
example, a bank account number—we can use a dictionary to quickly locate bank
account records.

305What you have learned

What you have learned
In this chapter, you’ve created a genuinely useful application. It can store contact
information, and it could be modified to store and manage any kind of data. You
created your first Python class to hold contact information, and you added attributes
to the class to hold specific information. You discovered that Python variables are
references to objects in memory, and that some objects are immutable. The contents
of an immutable object cannot be changed; instead, a new version of the object is
created with the changed contents. This immutable behavior applies to simple data
objects such as int, float, and string so that they can be manipulated as values by
programs that process data.

You used the Python pickle library to save an entire collection of contacts, and you
simplified the initialization of a contact by adding an init method to set initial values
into the contact. Finally, you explored the Python dictionary mechanism that allows
objects to be located by using a unique key value that identifies them.

Here are some points to ponder about classes.

If an object has name, address, and telephone attributes, can a program treat it
as a Contact instance?

Yes. This is a very good question. It goes to the heart of how objects work in Python.
In the Tiny Contacts program, we created a class called Contact and then added
name, address, and telephone attributes to instances of that class. The Tiny Contacts
program then displayed these attributes and allowed the user to edit them. If another
program made an object (perhaps called Customer) which has the same attributes,
then the Tiny Contacts program would work with the Customer object too. Some lan-
guages—for example Java, C++ and C#—have what is called “strong typing.” In these
languages, each variable is given a specific type and can work only with values of that
type. In these programs, an attempt to treat a Customer as a Contact would cause the
program to be rejected as incorrect before it ever got to run.

Programmers refer to the way Python works as “duck typing” because Python takes
the approach that “If it walks like a duck, and quacks like a duck, it is a duck.” In other
words, anything that behaves as a Contact can be used as a contact. If a programmer
gets this wrong—for example, by creating a Customer instance that doesn’t have a
telephone attribute— the Python program will raise an exception when it tries to use
that attribute. Later in this book, we’ll see how a Python program can check the type
of objects it is using as it runs.

306 Chapter 9 Use classes to store data

Can an object contain a reference to itself?

Yes, although this might not be a good idea. A better idea would be to “daisy chain”
objects together to form something called a “linked list,” in which an object in the list
contains a reference to the next item in the list. You can also use references in objects
to build more complex “tree-like” data structures.

Can we find out exactly where in memory an object is stored?

Everything in a program is stored somewhere in the memory of the computer. Each
memory location in the computer has a unique numeric address. You can think of
memory as a very large list of byte values, with an index number going from 0 to sev-
eral billions. When Python creates an object, it places it at some location in memory.
It’s possible to discover what this location is, but this information is not particularly
useful to our programs. For now, it’s best to just regard objects as being “out there” on
the end of references.

Is an object forced to have an initializer method?

No. The very first Contact we made didn’t have an initializer method. Instead, we
added the attribute values after the Contact object had been created. The __init__
method made it easier to set the initial values, and an initializer also ensures that the
attributes are set when an instance is created, but you don’t always have to make one.

Can you stop a program from adding new attributes to an object?

No. We could add a new attribute to an instance of Contact at any time. Doing so
would make that object a bit of a mutant, in that it would have an attribute that other
Contact instances did not. However, there’s nothing to stop us from doing this.

Can you remove attributes from an object?

No. Once attributes have been added, they are present for the lifetime of the object.

What is immutable again?

Immutable means unchangeable. Think of an immutable object as being held in a
sealed box with a glass window. We can look inside the box to see what’s there, but
we can’t change what’s in the box. Whenever a program tries to change an immutable
object, the Python system creates a new box with new contents, and uses that instead.
Making some types immutable allows Python to simplify data storage.

Consider a program that contained a story as a list of words. Each word in the story
is held in a string (which is immutable). Each entry in the list is a different word in the
story. We know that lists are implemented as references, so each element of the list
would refer to a string object. The word “the” is quite popular, so there might be many

307What you have learned

references to a single string instance holding the word “the.” From Python’s point of
view, many strings containing “the” saves memory because the word “the” need be
stored only once.

How does an operating system know it’s storing a binary file?

It doesn’t. A computer’s file system doesn’t really know or care what’s in the files it’s
managing in the same way that a librarian doesn’t have to care what’s inside the book
that she fetches for you. It is the program using the file that imposes meaning on the
contents. Files have “file extensions” on their names so that the operating system can
choose an appropriate program to work with a file, but the operating system is com-
pletely unaware whether a given file is binary or text.

Can two items in a dictionary have the same key?

No. If you think about it, adding a second item with the same key would make it
impossible for the original to be located.

10
Use classes to create

active objects

310 Chapter 10 Use classes to create active objects

Create a Time Tracker
Programs have a habit of growing larger. Sometimes this occurs because you underesti-
mate the scope of the problem, which is bad. However, it can also happen because your
customer likes your first program and comes back to you with additional requests (which
is good). In this chapter, the news is good. We heard back from our friend the lawyer,
who’s been using the tiny contact book we created in Chapter 9. She now wants you to
add capability to track the amount of time she spends working for a client so that she has
this information handy for billing. You’ve worked out the following user interface:

Time Tracker

1. New Contact

2. Find Contact

3. Edit Contact

4. Add Session

5. Exit Program

Command 4 is used to add the length of a work session that was performed for a
contact. The user can find the required contact and add the length of the session to
the details for that contact:

Enter your command: 4

add hours

Enter the contact name: Rob

Name: Rob Miles

Previous hours worked : 0

Session length : 3

Updated hours worked : 3.0

When command 2 is selected, the information displayed now includes the time spent:

Find contact

Enter the contact name: Rob Miles

Name: Rob Miles

Address: 18 Pussycat Mews, London, NE1 410S

Telephone: 1234 56789

Hours worked : 3.0

The number of hours spent working for each contact is displayed along with their
other details.

 New command to record working time

311Create a Time Tracker

Add a data attribute to a class
The Time Tracker application will need a way of storing the time the lawyer has worked
for each client. Each contact in the Tiny Contact book is represented by a Contact
object, which contains attributes that hold the name, address, and telephone number
of that contact. To create a Time Tracker application that stores the number of hours
worked for a contact, we can add an additional attribute to the Contact class, which will
be the number of hours the lawyer has been working for that contact. When we create a
new Contact, we need to set this value to 0. The best place to do this is in the __init__
method, which is called to set up an instance of the class when it is created:

class Contact:

 def __init__(self, name, address, telephone):

 self.name = name

 self.address = address

 self.telephone = telephone

 self.hours_worked = 0

The __init__ method now creates an hours_worked attribute and sets it to 0 when
a new Contact is created. Remember that the first parameter received by a class
method call is a reference called self. This is a reference to the object on which the
method is being called. In the case of the __init__ method, this reference refers to
the newly created Contact. The __init__ method uses the self reference to find this
newly created object and set up each of the data attributes on this object.

Now that the hours_worked attribute has been set up, we can create an add_session
function to our application that will find a Contact object and then increase the
hours worked for that contact. The lawyer will use this when she completes a session
working for a client so that she can enter the time spent and make sure she gets paid.
The add_session_to_contact function will have a very similar behavior to the
edit_contact function, but rather than allowing the user to edit the details of a
contact, the add_session_to_contact function will instead increase the value of
the hours_worked attribute by an amount specified by the user.

EG10-01 Time Tracker

def add_session_to_contact():

 '''

 Reads in a name to search for and then allows

 the user to add a session spent working for

 that contact

 '''

 init called to initialize a Contact

Set the initial value of hours to 0

312 Chapter 10 Use classes to create active objects

 print('add session')

 search_name = read_text('Enter the contact name: ')

 contact = find_contact(search_name)

 if contact != None:

 # Found a contact

 print('Name:', contact.name)

 print('Previous hours worked :', contact.hours_worked)

 session_length = read_float_ranged(prompt='Session length : ',

 min_value=0.5, max_value=3.5)

 contact.hours_worked = contact.hours_worked+session_length

 print('Updated hours worked:', contact.hours_worked)

 else:

 print('This name was not found.')

When we add this function to our application, it finds a contact, prints out the current
hours worked, and then requests a session_length value from the user. This value
is added to the hours_worked attribute for that contact. The updated hours_worked
value is then printed, and the function ends. If you run the example program EG10-01
Time Tracker in the code samples for this chapter, you’ll find that you can use it to
create and store Contact objects and keep track of the hours worked for each contact.

Create a cohesive object
There’s nothing wrong with our implementation of the Time Tracker application. After
all, it works, and it does what the customer wants. However, from a software design
point of view, there’s room for improvement. Good software design is important. We
want to make our software design as clear and simple as possible, making it easy for
other programmers to work with it.

If we were constructing a house, we would use bricks to make the walls and cables
to send electric power around the building. The job of a brick is to hold up the roof.
The job of a cable is to send power from one place to another. Builders can work with
bricks and cables and know that the behavior of one will not affect the other. In other
words, whether the lights in my house will work is not affected by the color of the
bricks used to build it.

We can use object-oriented design to create software objects that are as individual
and self-contained as bricks and cables. We want a programmer to be able to use a
Contact object in their application in the same way that a builder would use a brick to
build a house. When considering software quality, software developers talk about the
amount of cohesion shown in the design of an object. A lot of cohesion in an object

 Find the contact

 We found the contact

 Add the hours
worked

 Contact not found

313Create a Time Tracker

an object is a good thing. In the case of the Tiny Contacts application, a cohesive
Contact object should provide all the data and method attributes needed to work
with contact information.

Currently, the design of our Contact object does not show very high cohesion. The
Time Tracker program works by acting directly on the data attributes held by the
Contact object. The lawyer has told us that the shortest time she can spend on a case
is half an hour, and the longest time she can spend is three and a half hours. In the
Time Tracker application, this restriction is enforced in the add_session_to_contact
function, which restricts the range of the session length value read in from the user.

session_length = read_float_ranged(prompt='Session length : ', min_value=0.5,

max_value=3.5)

contact.hours_worked = contact.hours_worked+session_length

These two statements update the hours_worked value for a contact. The first state-
ment reads the session length (a number in the range 0.5 to 3.5), and the second
statement adds this session length value to the hours_worked attribute of the contact.
If the lawyer tells us that she has changed her working practices and can now work
for up to four hours for a contact, we must find the statements that read the session
length and update the maximum value allowed.

session_length = read_float_ranged(prompt='Session length : ', min_value=0.5,

max_value=4.0)

contact.hours_worked = contact.hours_worked+session_length

This would work, but in Chapter 13 we’ll create another version of the Time Tracker
application that uses a graphical interface. This program will perform its own valida-
tion of session length. If the maximum length of a session is changed by our lawyer cli-
ent, we must make sure that the session length tests in the graphical interface version
of the program are updated, too. Otherwise, our client would become annoyed that
she cannot enter four-hour sessions when using a graphical interface.

We have this problem because some of our “business rules”—things our customer has
asked the system to do—are outside of the “business objects”—the things we have
created to implement the system.

We can address this problem by making the Contact object more cohesive and
implementing the business rules inside the Contact class. If we put the Contact object
in charge of validating the length of a session, we simply must change the Contact
object to reflect the new business rules; systems that use the Contact object will just
keep working.

314 Chapter 10 Use classes to create active objects

Create method attributes for a class
Currently, any Python code has direct access to the hours_worked data attribute in
the Contact object. However, programs don’t need to be able to access the hours
attribute at all. In fact, they only need to do two things with the hours_worked value
in a Contact:

 ● Get the hours_worked value (to display time spent with a contact).

 ● Add the length of a session to the hours_worked value (to record a session).

Python objects can contain method attributes that can be used to ask an object to
do something. We first saw method attributes in Chapter 5 when we discovered that
a Python string object provides a method called upper(), which can be used to ask a
string to generate a version of itself with the lowercase characters converted to upper-
case. We used the upper() method to make sure that a name recognition program
would recognize a name entered in any case.

We’ll create two method attributes for the Contact class. These will manage the hours
worked for a contact and remove any need for programs to access the hours_worked
data attribute. We can start with a method to get the hours worked for a contact.

class Contact:

 def __init__(self, name, address, telephone):

 self.name = name

 self.address = address

 self.telephone = telephone

 self.hours_worked = 0

 def get_hours_worked(self):

 '''

 Gets the hours worked for this contact

 '''

 return self.hours_worked

The get_hours_worked method
There are a few questions we might like to consider about this code.

Question: What is the parameter self used to accomplish?

Answer: A method is a function that is part of an object. The first thing a method needs
to know is which object it is part of. The self reference is provided as the first parameter
of the method and refers to the object within which the method is running. We first saw
self when we considered the initializer (__init__) method in Chapter 9. In the case of
the initializer method, the value of the self parameter is a reference to the object being
initialized. The code in the initializer follows this reference to add the name, address, and
telephone attributes to the object being initialized.

In the case of the get_hours_worked method, the value of self is a reference to the
Contact that the method is running “inside.” Consider the following Python code:

rob_work = rob.get_hours_worked()

jim_work = jim.get_hours_worked()

if rob_work > jim_work:

 print('More work for rob')

else:

 print('More work for jim')

The code compares the number of hours worked for contacts rob and jim. The first time
that get_hours_worked is called, the value of self in the method call is a reference to
the object referred to by rob. The second time that get_hours_worked is called, the
value of self in the method call is a reference to the object referred to by jim.

Question: Is the get_hours_worked method stored when we save contact information in a file?

Answer: No. If we use pickle (see Chapter 9 for details) to store a contact list, the method
attributes in the class are not stored. Pickle stores only the data attributes of an object.

This means we must make sure that the Contact class has been defined in our program
before we load any Contact values using pickle. This allows method attributes on Con-
tact instances to be used in the program.

Question: Can a program still access the hours_worked attribute of a Contact class?

Answer: Yes, it can. Using method attributes to get the value of a data attribute held in
a class doesn’t stop a program from accessing the data attribute directly. Our aim is to
remove the need for programs to access data attributes. Later in the chapter, we’ll discover
ways that we can flag the hours_worked attribute as “private” to the Contact class.

CODE ANALYSIS

315Create a Time Tracker

316 Chapter 10 Use classes to create active objects

To add the hours worked in a session, we can create a method attribute that takes a
session length and adds it to the number of hours worked for that Contact object.

EG10-02 Time Tracker with method attributes

class Contact:

 def add_session(self, session_length):

 '''

 Adds the value of the parameter

 onto the hours worked for this contact

 '''

 self.hours_worked = self.hours_worked + session_length

The add_session method in the Contact class has two parameters. The first is self, which
refers to the Contact object being updated, and the second is session_length, which
is the length of the session to be added. This is a very simple version of the add_session
method, which just adds the value of the parameter to the hours_worked attribute.

Add validation to methods
The add_session method we just created is a good start, but we need to add the
validation of the session length. Consider the following statement:

rob.add_session(-10)

This is a completely legal call of add_session on the Contact variable rob, which
reduces the number of hours worked by 10. This happens because the add_session
method uses the value of its parameter and adds that value to the hours_worked attri-
bute. We can make the argument a negative number, and the add_session method
will happily reduce the number of hours assigned to that contact. This is good news
for the contact, but bad news for our lawyer who has just lost some money. If you run
the example EG10-02 Time Tracker with method attributes, you’ll find that you can
add negative session lengths.

To fix this, we can add validation to the add_session method so that it rejects an
attempt to add an invalid session length. When we began writing the program, our
customer told us that the smallest billable amount of time she spends on a case is half
an hour (0.5) and the longest time is three and a half hours (3.5). Any attempt to add
a session with a length outside this range should fail.

317Create a Time Tracker

I regard the values 0.5 and 3.5 as “magic numbers,” in that these values that have a
special meaning. However, it’s not obvious from reading the program text what that
meaning is. It would be really useful if we could give these values names so that any-
one reading the program can understand the intent of the code. It turns out that there
is a way we can do this in Python by using class data variables.

Create class variables
A class variable is a data attribute that is not part of any specific instance of the class.
Instead, the variable is part of the class itself. We can use class variables to store the
maximum and minimum session length values.

class Contact:

 min_session_length = 0.5

 max_session_length = 3.5

The two variables min_session_length and max_session_length are declared as part
of the Contact class. They are not part of any Contact object; they are part of the
Contact class. A program can use the name of the class to access these variables:

EG10-03 Time Tracker with class variables

class Contact:

 min_session_length = 0.5

 max_session_length = 3.5

 def add_session(self, session_length):

 '''

 Adds the value of the parameter

 onto the hours worked for this contact

 Invalid session length values are

 ignored.

 '''

 if session_length < Contact.min_session_length:

 return

 if session_length > Contact.max_session_length:

 return

 self.hours_worked = self.hours_worked + session_length

Test the minimum
session length

 Test the maximum
session length

318 Chapter 10 Use classes to create active objects

This version of add_session will ignore invalid session_length values by returning if
it is given a session value outside the valid range. If you experiment with the sample
program EG10-03 Time Tracker with class variables, you’ll find that invalid session
lengths are not added to the hours_worked value for an object.

A class variable is created the first time Python encounters the class. A program does
not need to create an instance of the Contact class to be able to use the values of
max_session_length and min_session_length; the variables are attached to the Con-
tact class, not to an object that is an instance of the class.

Using class variables
We can build our understanding of class variables by considering some situations in which we
might like to use them.

Question: Should I use a class variable to hold the age of a contact?

Answer: No. Each contact will have an age, so the age must be a data attribute added to
a Contact object, probably by code running in the __init__ method.

Question: Should I use a class variable to hold the maximum age of a contact?

Answer: Yes. There is no need to store this value for each contact; it can be held as part
of the class.

Question: Should I use class variables to hold the price per hour that the lawyer will charge
for her services?

Answer: If the lawyer charges exactly the same amount for all her clients, then it would
be reasonable to store the price as a class variable because the value will be stored only
once for all contacts. However, if the lawyer wants to be able to charge different amounts
for different customers, the price must be stored as an attribute of each Contact object.

However, you could store the maximum and minimum prices that could be charged as
class variables.

CODE ANALYSIS

Create a static method to validate values
When we considered cohesion earlier in this chapter, we decided that it is best if
an object doesn’t expose attributes for use by other programs. Ideally, users of a
Contact object should just interact with the object via calls to methods inside the

319Create a Time Tracker

object. We created the get_hours_worked and add_session methods so that users of
the Contact class would not have to interact with the hours_worked data attribute.

We could extend this policy to validation of the session length value because we don’t
want people to interact with the max_session_length and min_session_length val-
ues in the Contact class. We could create a method called validate_session_length
that accepts a session length value and returns True if the session length is valid and
False if it is invalid.

The best place for validation behavior is as part of the Contact class, rather than as
part of any given Contact object, which means any program could validate a session
length without needing to have an actual Contact. Python lets us do this by creating a
static method. You can think of a static method as one that is part of a class. If the class
is there, the method is always there. We can create a static method that could be used
to validate a session length:

EG10-04 Time Tracker with static method

class Contact:

 min_session_length = 0.5

 max_session_length = 3.5

 @staticmethod

 def valid_session_length(session_length):

 '''

 Validates a session length and returns

 True if the length is valid or False if invalid

 '''

 if session_length < Contact.min_session_length:

 return False

 if session_length > Contact.max_session_length:

 return False

 return True

 def add_session(self, session_length):

 '''

 Adds the value of the parameter

 onto the hours worked for this contact

 '''

 if not Contact.validate_session_length(session_length):

 return

 self.hours_worked = self.hours_worked + session_length

 Decorator indicates this is a static method
 Static method is part of the Contact class

 Call the validation
method

Creating static validation methods
Input validation allows us to make very good use of static methods. Here are some questions
you might consider about input validation.

Question: Why does the valid_session_length method not have a self parameter?

Answer: This is a very good question. The self reference is used in a method to refer to
the particular object running that method. In the case of a static method, there is no
object. The method is running as part of the class, not as an instance of the class. There
can be no self reference because there is no object to which it can refer.

Question: Why does the valid_session_length method not print a message to the user
communicating that a session length is invalid?

Answer: I’ve said repeatedly that it is important that the user of a program is kept
informed when things go wrong. In this case, you might think it would be sensible for
the valid_session_length method to print a message if it decides a session length is
invalid so the user would always know when she had entered an incorrect value.

However, this is not a good idea. To understand why, you must consider how the Contact
object will be used in the future. Currently, we are creating a Time Tracker that’s being used
from the Python console. The user types in commands, and the Time Tracker application
prints messages in response to these commands.

In Chapter 13, we’ll discover how to create an application that uses a graphical user
interface. I plan to use this Contact class in a graphical version of Time Tracker. If meth-
ods in the Contact class printed messages, these could not be displayed by a graphical
version of the Time Tracker program because there will be no Python console open to
display them.

CODE ANALYSIS

320 Chapter 10 Use classes to create active objects

We tell Python that the valid_session_length function is a static method by pre-
ceding the declaration of valid_session_length with a decorator. A decorator wraps
extra code around a function and modifies the way the function works. You add a
decorator to a Python program by using the @ character followed by the name of the
decorator you want to use. The @staticmethod decorator is built into the Python lan-
guage. It was created to convert a method into a static method that can exist without
the need for an instance of the class of which it is a part. A static method can be called
directly from the Contact class:

print(Contact.validate_session_length(5))

This statement would print False because 5 is not a valid session length.

Software developers talk about “a separation of concerns” between objects in a program.
They would say that the Contact class should contain all the code that manages a con-
tact. However, it is not the job of a contact to interact with the user.

In Chapter 1, we compared the Python Command Shell in IDLE with a waiter in a restaurant.
You type your commands into the shell, which then passes them on to the Python engine.
The Python engine produces a result that it passes back to the Python Shell for display.

We compared the Python engine to a chef in a restaurant. The chefs in a restaurant never
deal directly with the customers. They are simply given instructions to prepare dishes.
Where the dishes go and how they are used is not their concern. It is the waiter who pro-
vides the “user interface” for the restaurant, which allows the chef to focus entirely on the
cooking; the waiter can focus entirely on the customer experience.

You can regard the Contact class as rather like a chef. A program that provides the user
interface will call methods on a contact to ask it to do things (for example, add a work
session). Each method will return a result that can be displayed to the user, but how the
result is displayed is not the responsibility of the Contact class. In the Python Command
Shell version of the Time Tracker application, an invalid session length will result in a
printed message in the Command Shell. In the graphical version of the Time Tracker, an
invalid session length will be displayed in a window on the screen.

Question: What does a decorator do?

Answer: In real life, a decorator is someone who takes something and adds things to it.
For example, a decorated version of a picture might have a nice wooden frame around
it. You can think of a Python decorator as a function that sets up an environment for
another function to work in, runs the function, and then tidies up afterward.

Question: Can I create my own decorators?

Answer: Yes, you can, but creating decorators is a bit beyond the scope of this text.

Question: How do I know when to create a static method in a class?

Answer: You use a static method if you want to create a behavior that is independent of
any instance of a class. The validate_session_length method is not attached to any
Contact object because it “speaks for” the entire class.

Return status messages from a validation method
The add_session method above will prevent invalid session length values from being
added to a Contact, but it doesn’t indicate whether the session information was
stored correctly. If our lawyer client mistypes an hour value, it’s possible she might
not notice that the value was invalid, and this might cause session records to be lost.
We need to add some way that the add_session method can indicate whether the
Contact was updated correctly.

321Create a Time Tracker

322 Chapter 10 Use classes to create active objects

One programming technique is for a method to return a value that indicates whether
it worked. Up until now, the add_session method hasn’t returned anything. Now we’ll
make it return a Boolean value that indicates whether it worked.

def add_session(self, session_length):

 '''

 Adds the value of the parameter

 onto the hours spent with this contact

 Returns True if it works,

 or False if the session length is invalid

 '''

 if not Contact.validate_session_length(session_length):

 return False

 self.hours_worked = self.hours_worked + session_length

 return True

When this method is called, a program can check to see whether it worked by inspect-
ing the value of the result of the method. The add_session_to_contact function in
the Time Tracker application finds a contact and adds the length of the new session to
it. The following code shows how this function can test the result of the add_session
method and display an appropriate message.

EB10-05 Time Tracker with status reporting

session_length=read_float(prompt='Session length: ')

if contact.add_session(session_length):

 print('Updated hours succeeded:', contact.get_hours_worked())

else:

 print('Add hours failed')

This code tests the result returned by a call to add_session for the contact. If
add_session returns True, then all is well. Otherwise, the code tells the user that the
update has failed.

This works well, but it has one major problem, which is that the caller of add_session
does not need to take any notice of the result the method returns. This makes it possi-
ble to write a version of the Time Tracker in which an attempt to add hours might fail.
However, the user will never know that it has failed.

 Add the session to the contact
 Display success

message

 Display failure message

323Create a Time Tracker

Raise an exception to indicate an error
If we want to force fellow programmers to deal with a failure in the add_session
method, we could make the add_session method raise an exception rather than
returning the result False. This will stop the program unless the exception is handled.
Programs raise exceptions when something has gone wrong, and it would be mean-
ingless for the program to perform any more statements. We’ve seen this behavior
when we converted strings to numbers. The int function raises an exception when it
is given a string that doesn’t contain a number:

>>> x=int('rob')

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 x=int('rob')

ValueError: invalid literal for int() with base 10: 'rob'

The int method converts a string of digits into a number. However, if you give text to
the int method (as above), it cannot perform a conversion. Instead, the int method
raises a ValueError exception to indicate that it is unhappy. If this happens in a
program, the program is stopped. We’ll make an add_session method that raises
an exception when it is given an invalid input.

EG10-05 Time Tracker with exception

def add_session(self, session_length):

 '''

 Adds the value of the parameter

 onto the hours spent with this contact

 Raises an exception if the session length is invalid

 '''

 if not Contact.validate_session_length(session_length):

 raise Exception('Invalid session length')

 # only reach this statement if no exceptions were raised

 self.hours_worked = self.hours_worked+session_length

The add_session method above raises an exception if the value of the session_
length parameter is invalid. You can think of an exception as a message sent to
explain why the program couldn’t continue. This message object is created and then
“raised” to the attention of the Python system.

 Raise an exception if invalid

 Add the hours

Raising exceptions from code
We can investigate how exceptions are raised by using one of the example programs.

Start the IDLE editor and open the demo program EG10-06 Time Tracker with exception
and run it.

Select option 1 and enter a new contact:

Time Tracker

1. New Contact

2. Find Contact

3. Edit Contact

4. Add Session

5. Exit Program

Enter your command: 1

Create new contact

Enter the contact name: Rob Miles

Enter the contact address: 18 Pussycat Mews, London, NE1 410S

Enter the contact phone: 1234 56789

MAKE SOMETHING HAPPEN

324 Chapter 10 Use classes to create active objects

We’ll raise an exception object. The Exception class is designed to deliver messages
about exceptions. The initializer for the Exception class accepts a string that we can
use to describe what went wrong.

if not Contact.validate_session_length(session_length):

 raise Exception('Invalid session length')

This code in add_session deals with an invalid session length. Once the exception has
been raised, the current sequence of program execution is interrupted and the pro-
gram either stops with an error or control passes to an except handler if the statement
is running inside a try construction. In the case of the add_session method above,
the method will only reach the statement that updates the hours_worked value if no
exceptions were thrown.

Now add a new session lasting 2 hours to the contact using option 4:

Enter your command: 4

add session

Enter the contact name: Rob Miles

Name: Rob Miles

Previous hours worked: 0

Session length: 2

Updated hours worked: 2.0

This works correctly because 2 is a valid session length. Now try adding a session length of 4,
which is too large:

Enter your command: 4

add session

Enter the contact name: Rob Miles

Name: Rob Miles

Previous hours worked: 2.0

Session length: 4

Traceback (most recent call last):

 File "C:/Users/Rob/EG10-06 Time Tracker with exception.py", line 197, in <module>

 add_session_to_contact()

 File "C:/Users/Rob/EG10-06 Time Tracker with exception.py", line 145, in add_

session_to_contact

 if contact.add_session(session_length):

 File "C:/Users/Rob/EG10-06 Time Tracker with exception.py", line 45, in add_

session

 raise Exception('Invalid session length')

Exception: Invalid session length

The add_session method raises an exception that stops our program.

Extract an exception error message
Now we need to discover how to deal with exceptions and extract error messages
from them.

 1. # EG10-07 Time Tracker with exception handler

 2. hours_worked = read_float(prompt='Enter hours spent : ') Read in the hours

325Create a Time Tracker

Catching exceptions
We can repeat our previous experiment with the sample program EG10-07 Time Tracker
with exception handler. You’ll find that the program now runs correctly, and no errors are
produced if you enter invalid session lengths.

MAKE SOMETHING HAPPEN

326 Chapter 10 Use classes to create active objects

 3. try:

 4. contact.add_session(hours_worked)

 5. print('Updated hours succeeded:', contact.get_hours_worked())

 6. except Exception as e:

 7. print('Add failed:', e)

This code shows how to deal with an exception and extract the Exception object that
was raised when the error occurred. It’s part of the add_hours_to_contact function
in the Time Tracker application. We’ve written code that deals with exceptions before,
but this version obtains the Exception object and then displays the message from it.
The important statement here is the one on line 6, which defines the code that will run
if an Exception object is thrown. This statement sets the reference e to refer to the
Exception object that was raised. The statement that follows (on line 7) is the code
that handles the exception. It prints an error message and then the value of the excep-
tion, e, which causes the error text to be displayed.

Enter the contact name: Rob Miles

Name: Rob Miles

Previous hours worked: 2.0

Session length : -1

Add failed: Invalid session length

Above, you can see the output from this code if we try to add an invalid session
length. In this case, the session length is too small , which is reflected by the printed
message. A program can raise different types of the exception object, and we can
create custom exception types if needed.

 This might raise an exception

 This statement is reached only if add_
session didn’t throw an exception

 Display failure message

Raising and dealing with exceptions
There are a few questions we might consider about how programs deal with exceptions.

Question: Why does this version of the program not check the result returned by
add_session?

Answer: In the previous version of our Time Tracker, the method add_session returned
False if it found that the length of the session to be added was too long or too small.
This version of add_session doesn’t do that. Instead, it raises an exception if the session
length is invalid. We don’t need to test the result returned by this method as our program
will stop if an invalid session length is given.

Question: Isn’t raising an exception and stopping the program when something goes wrong
a bit harsh?

Answer: I don’t think so. My primary concern in situations like these is that I want to
avoid “silent” errors. I’d hate for my program to leave the user with the impression that
something had worked when it hadn’t. Raising an exception reduces this possibility. If a
programmer wants to avoid the possibility of a call to add_session raising an exception,
they can always use the validate_session_length method to check a session length
before adding it to a contact. In other words, I’ve provided a means by which session
lengths can be validated, so there should be no need for add_session to ever throw an
exception because it should only be called when we know it will work.

Question: Can a method be resumed once it has raised an exception?

Answer: No. Raising an exception is a one-way trip out of running code. If the add_
hours_to_contact method raises an exception, the only way to repeat the behavior in
the method is to call the method again, hopefully with a more sensible value to add.

Question: Why would we want to create our own kinds of exceptions?

Answer: Whenever we write some code that could fail, we should think about creating
our exception type to describe what went wrong. For example, if our program is trying to
read a file, it might be useful to record the name of the file and the position that’s been
reached in the file.

These kinds of design decisions should be made at the start of development to create an
error management and reporting strategy. If you get a job as a programmer, you’ll spend
at least as much time writing programs to deal with fault conditions as you will spend
writing the code to do the job.

Question: Should I always use exceptions to indicate that something has gone wrong?

Answer: I like exceptions because they ensure that errors are dealt with, but they don’t
force the errors to be handled in a particular way. In the case of the add_session
method we’ve been discussing, the program that calls the method could print a message,
display a dialog box, or write a line in a log file when an exception is raised.

CODE ANALYSIS

327Create a Time Tracker

Question: Why have we made add_session work like this? Our program was perfectly fine
before because it ensured that the hours value entered was in the valid range.

Answer: This is a very good point. We seem to have worked very hard to solve a prob-
lem that we didn’t have in the first place. However, I think we have vastly improved the
program. In previous versions of the Contact class, some of the knowledge about how
a contact works (in this case, the valid ranges for the hours we can add) was held outside
the class. In other words, users of the Contact class had to know that they are not sup-
posed to add hours values less than 0.5 or greater than 3.5.

I very much like putting all the knowledge about good contact behavior inside the
Contact class. That way, if we decide to change the allowed range of hours, we know
exactly where to look. Rather than having to change every piece of code that interacts
with the contact, we need only change one behavior inside the Contact class.

Protect a data attribute against damage
We have now completely removed the need for a programmer to interact directly
with the hours_worked attribute of the Contact class. However, the attribute is still
easily accessible. A programmer could accidentally (or maliciously) alter the value of
this attribute, and change the number of hours worked for a contact (which might cost
our lawyer some money). So, let’s look at how we can provide some protection for this
important information.

PROGRAMMER’S POINT

Python protects against mistakes, not attacks
The features we’ll explore are very useful and can help protect data attributes against
accidental damage. However, they don’t provide any protection against malicious code. In
other words, if another programmer decides to add some code to the Time Tracker appli-
cation that changes the hours_worked information in a Contact object, there’s nothing
in the Python language I can use to stop this. The only way I can detect and prevent such
attacks is by inspecting the running Python code and making sure that it runs as intended.

One of Python’s conventions dictates that an attribute with a name beginning with
the underscore character should not be used by code running outside the class. That
is, only methods in a class should use attributes that have names beginning with an
underscore. By adding an underscore to the beginning of the attribute name, we can
mark it as internal to the Contact class.

328 Chapter 10 Use classes to create active objects

Protecting data attributes in a class
We can find out how these naming conventions help to make programs more secure by using
the Python Command Shell in IDLE. Open it and enter the statements below.

>>> class Secret:

 def __init__(self):

 self._secret=99

 self.__top_secret=100

>>>

These statements create a class called Secret that has an __init__ method that creates two
data attributes. One attribute is called _secret and is set to 99. The other data attribute is
called __top_secret and is set to 100.

We use the same technique to create the name, address, and telephone number attributes of
a new contact.

MAKE SOMETHING HAPPEN

329Create a Time Tracker

def get_hours_worked(self):

 '''

 Gets the hours spent with this contact

 '''

 return self._hours_worked

Above, you see the get_hours_worked method returning the value of the
_hours_worked attribute. The snag with this approach is that it doesn’t provide any
protection for the variable _hours_worked. If a malicious programmer decides to fiddle
with the value of _hours_worked outside the Contact class, Python will not stop him.

You can achieve a higher level of security by preceding the name of the attribute
with two underscore characters to create a variable called __hours_worked. Doing so
tells Python to do some “name mangling” on the attribute name, making it slightly
harder to access from outside the class. We can see how this works by performing
some experiments.

Now, let’s create an instance of the Secret class and try to access these attributes. Enter the
following statement:

>>> x=Secret()

This creates a new Secret instance and sets the variable x to refer to that instance. Now, we
can try to access the _secret data attribute. Type the following and press Enter.

>>> x._secret

This tries to access the _secret data attribute. It works because adding a leading underscore
to an attribute name does not protect it.

>>> x._secret

99

It seems that the attribute called _secret is not protected at all. How about the
__top_secret attribute? Type the following and press Enter:

>>> x.__top_secret

This time, we are not successful; it seems that the __top_secret data attribute has been
hidden from us.

>>> x.__top_secret

Traceback (most recent call last):

 File "<pyshell#43>", line 1, in <module>

 x.__top_secret

AttributeError: 'Secret' object has no attribute '__top_secret'

However, Python has performed some “name mangling” to the name __top_secret. Inside
the Secret class, the attribute __top_secret can be referred to as __top_secret. However,
outside the class, the variable name is appended to the name of the class of which it is a part,
meaning that to the outside world, the attribute is called _Secret__top_secret. To prove
this, we can try to access an attribute with this name. Type in the following and press Enter:

>>> x._Secret__top_secret

330 Chapter 10 Use classes to create active objects

This time, we get access to the attribute of the class:

>>> x._Secret__top_secret

100

The “name mangling” provides very good protection against accidental use of attributes
inside a class, but it doesn’t completely prevent a determined person from changing data
values that should be private.

The good news is that there are programs available that can check Python source files for this
kind of naughty behavior. A good example is a program called Pylint (www.pylint.org), which is
a free download. Pylint will also make sure your code conforms to Python’s layout conventions.

The example program EG10-08 Time Tracker with protected attributes contains a ver-
sion of the Time Tracker that contains a protected version of the hours_worked attribute.

Protected methods
So far, all the methods we’ve added to the Contact class have been intended for use
by code outside the class. Methods such as add_session are called to store session
details. Our Time Tracker application calls these public methods to perform the
options the user selects from the application menus.

It is also possible to use this mechanism to protect methods held inside a class. By
putting a double underscore in front of the method name, we mark it as being private
to the class and not for use by code running outside the class. Note that the __init__
method is already flagged to indicate that it is not for use outside of the Contact class.

PROGRAMMER’S POINT

Writing secure code is all about workflow
Making a secure program is not about doing a single thing; it’s about creating a workflow
that generates quality code. You can think of the program-writing process as a bit like a data
processor. Problems go into the processor, and working solutions come out of the other end.
We’ve already seen the best way to handle the inputs to the process; we use things like proto-
types to make sure that the customer agrees that we are building the right thing.

Now we’re considering how to make high-quality code by using sensible design and tools, such
as Pylint, to make sure we’re correctly building the program. Solving problems for a customer
is about building a process that will generate a quality output, not just write a program. The
things we’re learning in this chapter play a big part in making quality, professional applications.

331Create a Time Tracker

http://www.pylint.org

332 Chapter 10 Use classes to create active objects

Create class properties
We’ve spent a lot of time and effort protecting the hours_spent data attributes of
the Contact class, but we haven’t done anything to protect any of the other contact
data. Currently, we can enter anything for a contact’s name, address, and telephone
number, including a single letter.

We should invent some more business rules to make sure our contact objects have
sensible contents. A simple rule would be to insist that name, address, and telephone
number items must be at least four characters long. We would, of course, discuss
these requirements with our customer to make sure that she agrees that they are a
good idea. We can then create a static method that will validate text entered into the
contact and add it to the Contact class:

class Contact:

 __min_text_length = 4

 @staticmethod

 def valid_text(text):

 '''

 Validates text to be stored in the contact

 storage.

 True if the text is valid, false if not

 '''

 if len(text) < Contact.__min_text_length:

 return False

 else:

 return True

This method would be used in the same way as the valid_session_length method. It
would be called to validate any text to be stored in the program. We could manage the
name, address, and phone number attributes in the same way as the hours_spent data
attribute. Also, we could provide methods to get and set these data attributes, just as
we have the get_hours_worked and add_session methods for managing hours_spent.
We could create methods called set_name and get_name to manage the name of each
contact. The set_name method could use the valid_text method above to ensure that
a contact can only have names that are at least four characters long.

However, Python has a better way of providing simple read and write access to
protected data held inside a class. It’s called a property. Properties let us preserve
the simple access to data attributes held in an object while allowing us to validate the
actions performed on a data attribute.

 Class data variable giving the minimum name length

Decorator that makes the following method static
 validate_text takes a single text parameter

 Test the length of the text against
the minimum length

 Return False if the text is too small

 Return True if the text is too large

Properties in classes
class Contact:

 @property

 def name(self):

 return self.__name

 @name.setter

 def name(self,name):

 if not Contact.validate_text(name):

 raise Exception('Invalid name')

 self.__name = name

The code above shows how we would implement a property for the name value in the
Contact class. The property performs validation and will reject an attempt to set the name
of a string to fewer than four characters.

Question: How does the value being set in the property get into the setter?

Answer: The setter method has two parameters when it is called. The first is self,
a reference to the object on which the setter is running. The second is the value to
be set in the property. In the setter above, the value being set is the name attribute of
the Contact.

Question: How does the program know which setter method to call for a particular property?

Answer: The decorator for the setter name contains the name of the property being set.

Question: Must the setter method raise an exception if the value being set is not valid?

Answer: No. There is no need to raise an exception. The setter could ignore invalid val-
ues or set the value to a default. However, I’ve decided that it’s important that the user of
the object be informed when a set operation fails, so I’ve made this version of the setter
raise an exception if the entered text is invalid.

Question: Do we need to perform the same validation for all the properties in a class?

Answer: No. The validation for the telephone number could test that the value being
set does not contain text, and the validation for the address could check for a properly
formed address. I’ve just used the same validation method to keep the code simple.

Question: Must a property have a setter?

Answer: No. If we leave out the setter method, we have created a “read only” property.
We could use this to remove the need for the get_hours_worked method. We could
just create a property called hours_worked that returns the value.

 Decorator that makes the next function a property
 Name property function to get the name

 Return the private attribute that contains the name

 Decorator to identify the setter method for the name property
 The setter method

 Validation for the name being set
 Raise an exception if the text is invalid

 Set the private name property to the text being input

CODE ANALYSIS

333Create class properties

Investigating properties
We can find out how properties work by using the Python Command Shell in IDLE. Open it
and enter the statements below. End the class definition with an empty line.

>>> class Prop:

 @property

 def x(self):

 print('property x get')

 return self.__x

 @x.setter

 def x(self,x):

 print('property x set:', x)

 self.__x = x

>>>

This creates a new class called Prop that contains a property called x. Now, enter a statement
to create an instance of the class.

>>> test = Prop()

We can now put a value into the x property in the test class. Enter the following to set the x
property to 99.

>>> test.x=99

When Python performs this statement, it runs the setter method for the property. This
method prints a message to tell us it has been called:

>>> test.x=99

property x set: 99

The setter method prints the value being set in x; in this case, the value 99. We can now try to
read the property. Enter the following statement, which should print the value of the property.

>>> print(test.x)

MAKE SOMETHING HAPPEN

334 Chapter 10 Use classes to create active objects

When Python reads the property, it runs the property method to get the value. This method
prints a message on the console:

>>> print(test.x)

property x get

We can see the getting and setting in action when we work with properties:

>>> test.x = test.x + 1

property x get

property x set: 100

In the above statement, which adds 1 to the value of the x property, you can see that Python
first fetches the property, adds 1 to it, and then stores the result.

Note that I added the print statements to the x property so we could see how the proper-
ties are called. We would not normally put print statements in property code.

We can use properties for the name, address, and telephone number of a contact.
Each property will have a pair of methods to get and set the value of that property:

EG10-09 Time Tracker with properties

class Contact:

 @property

 def name(self):

 return self.__name

 @name.setter

 def name(self, name):

 if not Contact.validate_text(name):

 raise Exception('Invalid name')

 self.__name = name

 @property

 def address(self):

 return self.__address

 Setter decorator name includes the name of the property

335Create class properties

Failures in property code can be confusing
The example program EG10-09 Time Tracker with properties implements the name,
address, and telephone number elements of a contact as properties. An attempt to set a
property to an invalid value will cause an exception. The initializer for the Contact in this
example program looks like this:

def __init__(self, name, address, telephone):

 self.name = name

 self.address = address

 self.telephone = telephone

 self.__hours_worked = 0

It doesn’t look like any of these statements would cause a program to fail. The __init__
method uses the values of the parameters to set the values of the data attributes in the
object. However, the following statement would fail:

rob = Contact(name='Rob', address='18 Pussycat Mews, London, NE1 410S',

telephone='1234 56789')

This attempt to construct a Contact with the name Rob would raise an exception because
the name Rob is only three characters long. The __init__ method would try to set the name
property to 'Rob', and the property code would raise an exception. A programmer investi-
gating this problem would find that it was caused by the statement:

Programmers might expect a method or function to throw an exception, but they might not
expect a simple attribute assignment to cause a program to fail. If we’re going to implement
properties, we need to be very clear about how the properties work and what will happen
when they fail. The example program EG10-10 Time Tracker with properties and excep-
tion handlers contains exception handlers that will deal appropriately with incorrect assign-
ments to properties.

WHAT COULD GO WRONG

336 Chapter 10 Use classes to create active objects

 @address.setter

 def address(self,address):

 if not Contact.validate_text(address):

 raise Exception('Invalid address')

 self.__address = address

 Setter decorator name includes the name of the property

Managing the billing amount
This code analysis is a bit different, because we will consider how to design our code rather
than look at program code that has already been written.

Question: How would we store the billing amount for a contact?

Answer: This would be held as a data attribute in the Contact class. We should store
and manage this value in a very similar manner to the __hours_worked value. Each
Contact will contain a data attribute to hold the hours worked and another to hold the
billing amount.

Once we’ve decided on a need for an attribute, we then pick a name for the attribute. The
name __billing_amount should work well.

CODE ANALYSIS

337Evolve class design

Evolve class design
Our lawyer customer has had another idea to improve her program. She wants to use
it for billing. Along with keeping track of hours spent on a case for a customer, she
now wants the Time Tracker program to track the billing amount in dollars owed by
each contact for her services. She has a simple way of calculating her prices. For every
session working for a contact, the lawyer charges $30 just to open the contact’s case
(the “open fee”), plus an additional $50 per hour (the “hourly fee”). As an example, a
one-hour session would cost $80 (that’s $30 open fee plus $50 for the hour).

She wants us to modify the behavior of the Add Session menu item so that each time
a work session is added, the program also updates the billing amount for that contact.
Then, when she prints out the customer details, the program will display the billing
amount as well as the working hours:

Name: Rob Miles

Address: 18 Pussycat Mews, London, NE1 410S

Telephone: 1234 56789

Hours on the case: 2.0

Billing amount: 130.0

This is the output she’d like to see. She has had a single two-hour session with Rob
Miles, and the billing amount is $130 ($30 to open the case and $100 for two hours).

Question: Why does __billing_amount have two leading underscores in the name?

Answer: A class attribute with a name beginning with two underscores is intended to be
private within that class and not for direct use by code outside that class. In other words,
only methods inside the Contact class should use the value in __billing_amount, and
the leading underscores are there to indicate this. We decided that __hours_worked
should not be changed outside the class, and __billing_amount should be managed in
the same way. We’ll provide access to the __billing_amount value in the Contact class
by creating a read-only property:

@property

def billing_amount(self):

 return self.__billing_amount

It’s easy to create a read-only property. We just omit the setter method. Now, users of the
Contact class can read the billing amount, but they can’t change it.

print('Rob owes:', rob.billing_amount)

The above statement would print the billing amount for a Contact referred to by the
variable rob.

Question: What would the statement calculating the billable amount for a session look like?

Answer: A Python statement calculating the billable amount would look like this:

amount_to_bill = 30 + (50 * session_length)

The session_length value is multiplied by 50 (the hourly fee) and then added to 30 (the
open fee). We can then add this amount to the billing amount for this customer.

self.__billing_amount = self._billing_amount+amount_to_bill

Question: Is it sensible to just use the values 30 and 50 in this code?

338 Chapter 10 Use classes to create active objects

Answer: No. The program will work, but one might have difficulty remembering which
value is the open fee and which value is the hourly fee. We can improve the program a lot
by using class variables to hold these values, as we did for the maximum and minimum val-
ues of session_length. We declare these as part of the Contact class because there’s
no need to store them for each contact because the lawyer has told us that she charges
all her customers the same amount.

class Contact:

 __open_fee = 30

 __hourly_fee = 50

Note that I’ve flagged these two attributes as private (by beginning the names with two
underscore characters) because we don’t want them to be changed from outside the
class.

We can then use these class attributes to calculate the amount to bill for a session.

amount_to_bill = Contact.__open_fee + (Contact.__hourly_fee * session_length)

Question: Where should the statement above go into the program?

Answer: This is a very good question. The best place to put this code is in the same place
in which we add a session to a Contact instance—the add_session method inside the
Contact class.

def add_session(self, session_length):

 '''

 Adds the value of the parameter

 onto the hours spent with this contact

 Raises an exception if the session length is invalid

 '''

 if not Contact.validate_session_length(session_length):

 raise Exception('Invalid session length')

 self.__hours_worked = self.__hours_worked + session_length

 amount_to_bill = Contact.__open_fee + (Contact.__hourly_fee * session_length)

 self.__billing_amount = self.__billing_amount + amount_to_bill

 return

Once the hours_worked value has been updated, the add_session method calculates
the amount to bill the contact and adds it to the billing amount for that contact.

339Evolve class design

340 Chapter 10 Use classes to create active objects

We just change the display_contact method so that it prints the billing amount, and
the new feature is complete.

def display_contact():

 '''

 Reads in a name to search for and then displays

 the content information for that name or a

 message indicating that the name was not found

 '''

 print('Find contact')

 search_name = read_text('Enter the contact name: ')

 contact = find_contact(search_name)

 if contact != None:

 # Found a contact

 print('Name:', contact.name)

 print('Address:', contact.address)

 print('Telephone:', contact.telephone)

 print('Hours on the case:', contact.hours_worked)

 print('Amount to bill:', contact.billing_amount)

 else:

 print('This name was not found.')

This display_contact method finds the contact and then displays the contact details.
Note that both the hours worked and the billing amount information about a contact
are now provided as properties. You can find the modified program in the sample
EG10-11 Time Tracker with Billing Amount.

Manage class versions
Adding the new data seems to have gone very well, but there is a problem with our
new program that our lawyer customer will find very quickly. The new program does
not work with any of her existing contact data. She will notice that while the program
can be started, the program will fail whenever she tries to add a new session or find a
contact, and she’ll see the following error message:

341Evolve class design

Traceback (most recent call last):

 File "C:/Users/Rob/EG10-11 Time Tracker with Billing Amount.py", line 257,

 in <module>

 display_contact()

 File "C:/Users/Rob/EG10-11 Time Tracker with Billing Amount.py", line 160,

 in display_contact

 print('Amount to bill:', contact.billing_amount)

 File "C:/Users/Rob/ EG10-11 Time Tracker with Billing Amount.py", line 79,

 in billing_amount

 return self.__billing_amount

AttributeError: 'Contact' object has no attribute '_Contact__billing_amount'

The new program contains a read-only property in the Contact class that returns the
billing amount for the contact. Unfortunately, this fails because the property tries to
use the ___billing_amount attribute, which doesn’t exist in a contact loaded from
an old file.

Add a version attribute to a class
The best way to solve this problem is to have a version number attribute in each contact
that we store. If the application loads a contact with an old version number, it can detect
the old version and upgrade the old contact into a new one. The version number will be
just another data attribute stored in the class and set when the class is created.

def __init__(self, name, address, telephone):

 '''

 Initializes a version 1 contact

 '''

 self.name = name

 self.address = address

 self.telephone = telephone

 self.__hours_worked = 0

 self.__version = 1

This is the __init__ method for a “version managed” Contact that doesn’t perform
session billing. It sets the name, address, and telephone number to the parameters
supplied and then sets the __hours_worked attribute to 0. It also sets the __version
attribute to 1 to indicate that this is a version 1 Contact object.

 Set the version number to 1

342 Chapter 10 Use classes to create active objects

Check version numbers
We can then create a method to check the version of a contact and make sure it’s up
to date, which would be called after a Contact has been loaded:

def check_version(self):

 '''

 Checks the version number of this instance of

 Contact and upgrades the object if required.

 '''

 pass

This check_version method doesn’t do anything now because version 1 is the first
version of our Contact. However, we need to add it at this point because it will be
used each time a contact is loaded:

def load_contacts(file_name):

 '''

 Loads the contacts from the given file name

 Contacts are stored in binary as a pickled file

 Exceptions will be raised if the load fails

 '''

 global contacts

 print('Load contacts')

 with open(file_name, 'rb') as input_file:

 contacts = pickle.load(input_file)

 # Now update the versions of the loaded contacts

 for contact in contacts:

 contact.check_version()

When the contacts have been loaded, the for loop at the end of the load_contacts
function will work through the contacts and call check_version to check the version
of each contact. The check_version method will make sure that each contact is up
to date.

 Work through all the loaded contacts and check their versions
 Ask this contact to check its version

343Evolve class design

Upgrade a class
Now, let’s change the application and add the __billing_amount attribute to it. To do
this, we must create a new version of the Contact, which contains an extra data value.
The initializer of this version of the Contact will set the billing amount of the new con-
tact to 0, and it will set the version number to 2.

def __init__(self, name, address, telephone,email):

 '''

 Initializes a version 2 contact

 '''

 self.name = name

 self.address = address

 self.telephone = telephone

 self.__hours_worked=0

 self.__billing_amount=0

 self.__version = 2

If my upgraded program tries to use an old contacts file, it will fail because there is
no __billing_amount attribute in the old file. This is what caused the error our lawyer
saw when she tried to open an old file using the modified Time Tracker. However, now
that our program is tracking the versions of the data it is working with, we can add
some code to the check_version to fix this problem.

def check_version(self):

 '''

 Checks the version number of this instance of

 Contact and upgrades the object if required.

 '''

 if self.__version == 1:

 # version 1 of this class does not have a billing amount

 # create a billing amount attribute of zero

 self.__billing__amount = 0

 # upgrade the contact to version 2

 self.__version = 2

The check_version method is called after the contact has been loaded. It tests the
version number of this contact. If the version is 1, a __billing_amount data attri-
bute set to 0 is added to the object. Once the __billing_amount data attribute has
been added, the class is compatible with version 2 contacts, so the version number is
increased to reflect this. When the class is stored, the updated version number will be
stored in the contact, along with the billing amount.

 Billing amount attribute
 Set the version number to 2

 Check the version of this Contact

 Set the billing amount to 0

 Upgrade the version number

Explore version management
To get a better understanding of what we have just done, we can use two of the
sample programs:

Start IDLE and load the programs EG10-12 Time Tracker with version management and
EG10-13 Time Tracker with version managed billing

Run the program EG10-12 Time Tracker with version management and use menu option 1
to create a new contact.

Enter your command: 1

Create new contact

Enter the contact name: Rob Miles

Enter the contact address: 18 Pussycat Mews, London, NE1 410S

Enter the contact phone: 1234 56789

Then use menu option 2 to find that contact and view it.

Enter your command: 2

Find contact

Enter the contact name: Rob

Version: 1

Name: Rob Miles

Address: 18 Pussycat Mews, London, NE1 410S

Telephone: 1234 56789

Hours on the case: 0

This program prints the version of the contact along with other contact information. You can
see that this is version 1 of the contact. Now, stop the program and save the data by using
command 5.

Enter your command: 5

save contacts

MAKE SOMETHING HAPPEN

344 Chapter 10 Use classes to create active objects

Now, run the program EG10-13 Time Tracker with version managed billing. It will load the
contacts list and upgrade it. Enter command number 2 to view a contact, and view the one
you just created.

Enter your command: 2

Find contact

Enter the contact name: Rob

Version: 2

Name: Rob Miles

Address: 18 Pussycat Mews, London, NE1 410S

Telephone: 1234 56789

Hours on the case: 0

Billing amount: 0

As you can see above, the contact is now version 2, and it has a billing amount that was set up
by the check_version method when the contacts were loaded.

PROGRAMMER’S POINT

Add version management when you design data storage
Whenever I start a project for a customer, I consider which items I’m storing will require
version management. In the case of the Time Tracker, there was a good chance that our
customer would want to add features to the system, and so we should have considered
version management at the very beginning of the project.

The above process is followed every time a new version of an application is installed. New
features usually mean changes to the underlying data, and the application manufacturers
have very well-developed processes for doing this.

When you’re trying to work out how long it will take to write a program for a customer, it is
very important that you allow for the time you will spend writing code to deal with updates to
the data. This explains why programs that seem to be trivial can actually involve a lot of work.

345Evolve class design

346 Chapter 10 Use classes to create active objects

The __str__ method in a class
One thing we’ve noticed is that each time we add a new attribute to the Contact
object, we must update the display_contact method in our application. We also
need to make sure it prints the value of the new attribute. It would be nice if we could
just print the contact, rather than having to print each data attribute in turn.

def display_contact():

 '''

 Reads in a name to search for and then displays

 the content information for that name or a

 message indicating that the name was not found

 '''

 print('Find contact')

 search_name = read_text('Enter the contact name: ')

 contact=find_contact(search_name)

 if contact!=None:

 # Found a contact

 print(contact)

 else:

 print('This name was not found.')

This version of display_contact prints the contact rather than printing each data
attribute from the contact. Unfortunately, just printing the contact doesn’t work:

Time Tracker

1. New Contact

2. Find Contact

3. Edit Contact

4. Add Session

5. Exit Program

Enter your command: 2

Find contact

Enter the contact name: Rob

<__main__.Contact object at 0x0000018E5E9EBB70>

 Just print the contact

 Output from the default
object printing method

347The __str__ method in a class

Above, you can see the result of using the new display_contact method. The default
print behavior for an object simply prints the type of the object being printed and the
physical address of the object in memory. However, we can replace this behavior with
a new version by adding a new method into the Contact class:

class Contact:

 def __str__(self):

 return 'Name: ' + self.name + '\n' + \

 'Address: ' + self.address + '\n' + \

 'Telephone: ' + self.telephone + '\n' + \

 'Hours on the case: ' + str(self.hours_worked) + '\n' + \

 'Amount to bill: ' + str(self.billing_amount)

Whenever Python needs the string version of an object, it calls the __str__ method
provided by that object. The classes that represent numeric objects, such as int and
float, have __str__ methods that return their value expressed as a string; this is
how we can print numeric values in our programs. Classes that we create inherit their
__str__ behavior from the object on which they are based. We’ll discuss inheritance
in detail in the next chapter.

The default __str__ behavior returns the simple description we saw above. However,
we can provide an object with its own __str__ method that the object can use to
return a string describing its contents. In the example above, you can see that the
method assembles a string and returns it.

The __str__ method uses something we haven’t seen before. The expression that
combines all the various string elements to create the description to return is very
long. We use a “continuation character” on the end of each line of the expression to
tell Python that the expression continues on the next line. The continuation character
is a single backslash (\), as you can see above.

If we add this __str__ method to our Contact class, the print behavior works correctly:

Name: Rob Miles

Address: 18 Pussycat Mews, London, NE1 410S

Telephone: 1234 56789

Hours on the case: 3.0

Amount to bill: 180

 New __str__ method
 Continuation character

on the end of the line

 Convert the
hours_worked

number into
a string

Adventures with string formatting
We can find out how string formatting works by using the Python Command Shell in IDLE.
Open it and enter the statements below.

>>> name = 'Rob Miles'

>>> age = 21

MAKE SOMETHING HAPPEN

348 Chapter 10 Use classes to create active objects

Python string formatting
The expression that creates the string to be returned by the __str__ method is very
long and rather tedious for us to create. We must remember to use the str function
to convert all the numeric values for hours worked and amount to bill into strings so
that they can be assembled into a result. Python has a way to make this much easier.
A program can use the format() method to create a formatted string. We’ve seen
how strings can expose methods, such as upper(), which returns an uppercase version
of the text in the string. The format() method is given a set of values and inserts them
into the string, which serves as a template for the output that we want. The positions
for the insertions are given by placeholders.

EG10-15 Time Tracker with formatted string

class Contact:

 def __str__(self):

 template = '''Name: {0}

Address: {1}

Telephone: {2}

Hours on the case: {3}

Amount to bill: {4} '''

 return template.format(self.name, self.address, self.telephone,

 self.hours_worked, self.billing_amount)

Above, you can see how this would be used to format the string that describes a
contact object. The values in the call to the format method are inserted at the points
marked by the placeholders for each value. A placeholder is expressed as {n}, where n
is the position of the argument in the call of format. The argument at the start of the
list of values is numbered 0.

 Format string
 Placeholder for the address

 Format method

These statements create two variables that hold my name and my age. Now we can create a
template string to be formatted.

>>> template = 'My name is {0} and my age is {1}'

This creates a new string value called template. We can then call the format method on the
template string. Type the following and press Enter.

>>> template.format(name,age)

The format method returns a string that contains the parameter values inserted in it:

'My name is Rob Miles and my age is 21'

The format method converts items into strings before printing them, but we can add more format-
ting information if we wish. (I’m just showing the templates and their outputs in these examples.)

template = 'My name is {0:20} and my age is {1:10}'

'My name is Rob Miles and my age is 21'

The placeholder can be followed by a width value as shown above, in which case, the item is
printed in that width. Spaces are added if required, which is very useful if you want to print
things in columns.

Strings are normally aligned on the left edge when they are printed, and numbers are aligned on
the right. We can select which alignment to use by adding > or < characters as shown below:

template = 'My name is {0:>20} and my age is {1:<10}'

'My name is Rob Miles and my age is 21 '

If you’re printing a floating-point number, you can set the number of decimal places to be printed:

template = 'My name is {0:20} and my age is {1:10.2f}'

'My name is Rob Miles and my age is 21.00'

This template prints the age value as a floating-point value with two decimal places, in a
width of 10 characters. There are other formatting options you can use to center text and to
control how numbers are displayed. They are described in the Python documentation here:
https://docs.python.org/3.6/library/string.html

349The __str__ method in a class

https://docs.python.org/3.6/library/string.html

350 Chapter 10 Use classes to create active objects

Session tracking in Time Tracker
The Time Tracker application is turning into a bit of a monster. Our customer is getting
very enthusiastic about the program and keeps having new ideas. This is good news
for us because it keeps us busy. Her latest idea is a very good one. She has decided
that it would be very useful to be able to record exactly when a given session for a
client took place. She’s drawn up a specification of what she wants to see:

Time Tracker

1. New Contact

2. Find Contact

3. Edit Contact

4. Add Session

5. Exit Program

Enter your command: 2

Enter the contact name: Rob

Name: Rob Miles

Address: 18 Pussycat Mews, London, NE1 410S

Telephone: 1234 56789

Hours on the case: 10.0

Amount to bill: 470.0

Sessions

Date: Mon Jul 10 11:30:00 2017 Length: 1.0

Date: Tue Jul 12 11:30:00 2017 Length: 2.0

Date: Wed Jul 19 11:30:00 2017 Length: 2.5

Date: Wed Jul 26 10:30:20 2017 Length: 2.5

Date: Mon Jul 31 16:51:45 2017 Length: 1.0

Date: Mon Aug 14 16:51:45 2017 Length: 1.0

The Find Contact command now shows a list of sessions, when each took place, and
the length of each session in hours. This looks like it might be difficult to add to the
Time Tracker, but it’s a good way for us to explore class design and look at some inter-
esting features of the Python language.

Creating a session class
In this Code Analysis, we’ll design some code and then take a look at how it works.

Question: How will we store information about a session?

Answer: Whenever we need to store a set of related information, we should think about
creating a class to hold that information. We should give the class a name (I suggest
Session) and then identify the data attributes that the class should contain. In this case,
we are storing two items: the length of the session and the date and time that the session
ended. We can initialize these values in an __init__ method for the Session class:

class Session:

 __min_session_length = 0.5

 __max_session_length = 3.5

 @staticmethod

 def validate_session_length(session_length):

 '''

 Validates a session length and returns

 True if the session is valid or False if not

 '''

 if session_length < Session.__min_session_length:

 return False

 if session_length > Session.__max_session_length:

 return False

 return True

 def __init__(self, session_length):

 if not Session.validate_session_length:

 raise Exception('Invalid session length')

 self.__session_length = session_length

 self.__session_end_time = time.localtime()

 self.__version = 1

The Time Tracker application can now create an object that describes a particular session:

session_record = Session(session_length)

CODE ANALYSIS

351Session tracking in Time Tracker

This statement will create a Session with the session length supplied as a parameter.
The validate_session_length method has been moved inside the Session class. It is
used to validate the session length when a new Session object is created. If the session
length is invalid, the __init__ method raises an exception. The __init__ method uses
the time library to read the local time when the Session object is created. This is stored
in the __session_end_time attribute of the Session object.

Question: Are we using version control for the Session class?

Answer: Yes, we are using version control. We want to be able to keep the lawyer happy
if she suggests new things she wants to store about each session. Perhaps she will want
to be able to make a note of the location of a session or who was present at a meeting.
Adding version control now will make it possible for us to add extra features to our
session records without breaking existing stored data. This means that the Session class
will also contain a check_version method that can be used to update a session object
if required.

def check_version(self):

 pass

Currently, this method does nothing because we are creating version 1 of the
Session class.

If you look at the pattern for construction of the Session object, you’ll find that it is
heavily based on the construction of the Contact object. This is not accidental. It is very
sensible to use a particular format for the design of an object and then repeat it across
an application.

Question: How will we allow users of the Session class to get the session length and session
end time items from a Session object?

Answer: We can expose these as properties of the class, but we won’t provide a setter
method for the properties. This makes it possible for programs to read the values but not
change them. We used the same technique with the billing amount and hours worked
values of the Contact class.

@property

def session_length(self):

 return self.__session_length

@property

def session_end_time(self):

 return self.__session_end_time

352 Chapter 10 Use classes to create active objects

Question: Will the Session class have an __str__ method?

Answer: Yes, it will. It will return a string that describes the contents of the Session.

def __str__(self):

 template = 'Date: {0} Length: {1}'

 date_string = time.asctime(self.__session_end_time)

 return template.format(date_string, self.__session_length)

The time library contains a function called asctime() that takes a localtime value and
returns a string containing the time. This is used to get a date string, which is then used in
a template to create the string to be returned.

 Convert the time into a string

Now that we have our Session class, the next thing to do is incorporate this into the
Time Tracker application. Each Contact object will contain a list of sessions. The list will
be created when the Contact is initialized:

class Contact:

 def __init__(self, name, address, telephone):

 self.name = name

 self.address = address

 self.telephone = telephone

 self.__hours_worked = 0

 self.__billing_amount = 0

 self.__sessions = []

 self.__version = 3

The __init__ method above creates the list of sessions for this contact. Note that the
Contact class is now at version 3. Contact version 1 was the original contact. Contact
version 2 added the billing amount to each contact. Version 3 adds session tracking.
The check_version for a version 3 method will add a session list to an older version
Contact object.

class Contact:

 def check_version(self):

 '''

 Checks the version number of this instance of

 Contact and upgrades the object if required.

 '''

 Create a list to hold the sessions for this contact
 This is version 3 of the Contact object

353Session tracking in Time Tracker

354 Chapter 10 Use classes to create active objects

 if self.__version == 1:

 # version 1 of this class does not have a billing amount

 # create a billing amount attribute of zero

 self.__billing_amount = 0

 # upgrade the contact to version 2

 self.__version = 2

 if self.__version == 2:

 # Version 2 of this class does not have a session list

 # Add an empty session list

 self.__sessions = []

 # upgrade the contact to version 3

 self.__version = 3

 # Now check the versions of each of the sessions

 for session in self.__sessions:

 session.check_version()

If the Time Tracker application opens a very old file of version 1 contacts, you will see
that the contacts will first be upgraded to version 2 and then upgraded to version 3
right away. Note that the check_version method also calls a check_version method
on each of the sessions in the contact, using a for loop to work through the sessions.

We add a new session record to the Contact in the add_session method, which is
part of the Contact class. Previously, this method just updated the values of the hours
worked and amount to bill data attributes. Now, it creates a new Session record and
adds it to the list of sessions held in the Contact.

class Contact:

 def add_session(self, session_length):

 '''

 Adds the value of the parameter

 onto the hours spent with this contact

 Raises an exception if the session length is invalid

 '''

 if not Session.validate_session_length(session_length):

 raise Exception('Invalid session length')

 self.__hours_worked = self.__hours_worked + session_length

 amount_to_bill = Contact.__open_fee + (Contact.__hourly_fee *

 session_length)

 Check for a version 1 Contact

 Add a billing amount to a version 1 Contact

 Upgrade the version of the Contact to version 2

 Check for version 2 of the Contact

 Add an empty session list to a version 2 Contact

 Upgrade the version of the Contact to version 3

 Update all the sessions in this Contact

355Session tracking in Time Tracker

 self.__billing_amount = self.__billing_amount + amount_to_bill

 session_record = Session(session_length)

 self.__sessions.append(session_record)

The final thing we must consider is how we’ll get a list of the sessions out of a Contact.
We must create a string that contains a line for each session. This is the format that the
lawyer specified when she suggested the new feature. The starting point for this string
is the list of session objects in a Contact. This must be converted into a string, which
can be printed in a report.

@property

def session_report(self):

 # Convert the list of sessions into a list of strings

 report_strings = map(str, self.__sessions)

 # Convert the list of strings into one string

 # separated by newline characters

 result = '\n'.join(report_strings)

 return result

I’m quite proud of this method. It returns a string that contains a list of sessions. It uses
the Python functions map and join, which are worth knowing. However, if it looks
strange to you, don’t worry. We’ll explore in detail how we can use these functions to
go from a list of sessions to a long string that contains a report.

The Python map function
We want to convert a list of Session objects into a list of strings. The str function can
be applied to an object to get the string version of that object, and we can use the map
function to apply this function to all the Session objects in the __sessions list.

The map function is a great example of the power of Python. It accepts two argu-
ments when called. The first argument is the name of a function that accepts a single
parameter and returns a result. The second argument is a list of items on which the
function can work. Python allows us to use function names just like any other value in
a program. Functions can be stored in variables and passed as arguments to method
calls. We’ll investigate how to do this in Chapter 11. For now, just work on the basis that
the first argument to a call of map is the name of the function that you apply to each
item in the list.

 Create a session record for this session
 Add it to the list of sessions

 Use map to convert each Session in
the list to a string

 Use join to convert the list of strings
into a single string

Investigating the map function and iteration
Please note that this is an important, and rather long, piece of investigation. At the end of
it, you will have learned not only how the map function is used, but also some fundamental
things about the way Python works.

We can find out about the map function by using the Python Command Shell in IDLE. We’ll
use map to indent a list of text strings. Indenting is a large part of how Python programs are
structured. The IDLE program editor even includes a command you can use to indent a block
of text (Format, Indent). We’ll build our indenter using the map function. Open the IDLE
Command Shell and enter the statement below.

>>> code = ['line1', 'line2', 'line3']

>>>

This statement creates a list that contains three string values. If we just enter the name of the
list, Python will show us the contents.

>>> code

The Python Command Shell will show us the value of any expression entered, so the contents
of the code list will now be displayed.

>>> code

['line1', 'line2', 'line3']

>>>

Next, we need to create a function that will indent a string for us. We can indent a string just
by adding four spaces to the beginning of the string. Enter the following Python code to cre-
ate a function that will indent a string provided as a parameter. Remember to enter a blank
line after the return to end the definition of the function.

>>> def indent(x):

 return ' '+x

>>>

MAKE SOMETHING HAPPEN

356 Chapter 10 Use classes to create active objects

We can test the indent function by giving it a string and seeing what the function returns.
Enter the following statement.

>>> indent('Rob')

This will call the function indent and pass it to the argument 'Rob'. The result of the call of
the function will be displayed.

>>> indent('Rob')

' Rob'

>>>

We would like to apply the indent function to every string in the code list to produce
indented lines of code. We could create a for loop to do this, but instead we’ll use the map
function to apply the indent function to each of the items of code. Type in the following
statement:

>>> indented_code = map(indent, code)

>>>

Enter the above statement to set the variable indented_code to the result of the map func-
tion. You might think that when we print indented_code, you’ll see a list of indented code.
View the contents of the indented_code variable by entering its name.

>>> indented_code

When you press Enter, Python will show you the contents of the indented_code variable.

>>> indented_code

<map object at 0x00000211E6FCBA58>

>>>

This is very confusing. Instead of a list of strings, we have a thing called a map object. What
is happening here?

What we see here is a splendid example of the cleverness of Python. Rather than giving us a
processed list of objects, the map function instead returns something called an iterator. An
iterator is an object that a program can “work through” one item at a time.

357Session tracking in Time Tracker

The usual way of working through an iterator is to use a for loop. List objects are also iter-
ators, which is how we have written for loops that work through items in a list. The range
function also returns an iterator as a result so that we can write loops that can count.

We can write a for loop to work through the values returned by the indented_code iterator
and print each item.

>>> for s in indented_code:

 print(s)

Enter the above for loop and the print statement. Enter an empty line after the print
statement to cause the loop to run.

>>> for s in indented_code:

 print(s)

 line1

 line2

 line3

This is the list of strings that we were expecting. Each time around the loop, the value in s is
the next item returned by the iterator. Note that each line has been indented by four spaces.

Iterators are a way of saving memory. The designers of Python said, “There’s no need for the
map function to produce a list. Instead, it could just provide us with an iterator object that can
provide each list element in turn when we ask it.”

You can think of the map iterator as a little factory. Each time the loop iterating the map
needs another item, it asks the map iterator for it. The map iterator gets the next value out of
the source, applies the function it has been told to use to that item and then returns it. When
the map iterator runs out of values to return, it raises a “StopIteration” exception to tell the
loop there are no more items available. This stops the loop.

We can explore this by recreating the iteration and then doing what a for loop would do
with the iteration. Repeat the statement that creates the map.

>>> indented_code = map(indent, code)

358 Chapter 10 Use classes to create active objects

Now, we can ask the indented_code iterator to give us the next value in the iteration by call-
ing the method __next__ on the iterator object. Type the statement below and press Enter
to run it.

>>> indented_code.__next__()

This is the point at which the indent method will be called to produce the next value from
the iteration.

>>> indented_code.__next__()

' line1'

>>>

This is the first line in the indented list. We can view successive lines by calling the __next__
method again. Perform three more calls and see what happens.

>>> indented_code.__next__()

' line2'

>>> indented_code.__next__()

' line3'

>>> indented_code.__next__()

Traceback (most recent call last):

 File "<pyshell#67>", line 1, in <module>

 indented_code.__next__()

StopIteration

>>>

After the third call of __next__ the iteration runs out of items, so it raises the
StopIteration exception to indicate that there are no items left. Once an iteration has
been completed, it can’t be used again. You must create a new iteration if you want to make
another pass through the data. Let’s do that now. Enter the following statement:

>>> indent_iterator = map(indent, code)

This creates a new iterator called indent_iterator, which will iterate through the code list
and apply the indent function to each element.

359Session tracking in Time Tracker

We can use the Python function list to create a new list from this iterator. The list function
creates an empty list and then adds successive iterations from the iterator to that list. Enter
the following statement to do this:

>>> indented_code = list(indent_iterator)

>>>

We can now view the contents of the indented_code list and see that it is now a list of
strings. Type in the name and press Enter.

>>> indented_code

The Python Shell will now display the contents of the indented_code list:

>>> indented_code

[' line1', ' line2', ' line3']

>>>

This shows that we now have our indented lines of code.

One mind-bending possibility is that the input of a map function is actually an iterator. Enter
the following statements to explore this:

>>> i1 = map(indent, code)

>>> i2 = map(indent, i1)

The first statement creates an iteration called i1 that applies the indent function to all the
items in code list. The output of this iteration will be code lines indented by four characters.

The second statement creates an iteration called i2 that applies the indent function to all
items in the i1 iteration. We can then use the list function to convert the i2 iteration into a
list and look at it.

>>> list(i2)

360 Chapter 10 Use classes to create active objects

The list function creates a list of items generated by the i2 iterator. These items are then
displayed by the Python Command Shell:

>>> list(i2)

[' line1', ' line2', ' line3']

As you might expect, each line has been indented twice. Once by the i1 iteration, and again
by the i2 iteration. Python makes it very easy to create “chains” of iterators to work through
data. Note that if nothing ever iterates through the iterator returned by a map, none of the
items in the iterator will ever be generated.

Now that we know what map does, and a lot of other useful things about how Python
processes data, we can re-visit the statement in the session_report method that
generates a list of report strings.

report_strings = map(str, self.__sessions)

Remember that the starting point for our report is a list of Session objects in a list
in the variable self.__sessions. These Session objects need to be converted into
strings to be used in the report. The map function will create an iterator that will apply
the str function to each element in the self.__sessions list. The str function acts
on an object to return the string that describes that object. In other words, the str
function calls the __str__ method in an object. The Session class contains a __str__
method, which we discussed in the “Code Analysis: Creating a session class” section
earlier in this chapter. It generates a session description in the format our lawyer
wants to see.

The next phase of the conversion of our session list into a reported string will work
through the report_strings iterator and generate the string result that will be printed.

The Python join method
I hope that by now you’re beginning to see that the elements of Python that we’re
using are objects with method attributes. Just like a Contact object provides methods
such as add_session, a string object provides methods such as lower() (to return a
lowercase version of the string). Python will allow programs to call string methods
directly on strings of text in a program.

'FRED'.lower()

361Session tracking in Time Tracker

Investigating the join function
This will be a slightly shorter investigation than the previous one. We can find out about the
join function by using the IDLE Command Shell. Open the IDLE Command Shell and enter
the statement below.

>>> report_strings = ['report1', 'report2', 'report3', 'report4']

>>>

This creates a list called report_strings, which contains four strings. As we know, a list can
be used as an iterator, so we can use this list in a join function.

>>> '**'.join(report_strings)

This statement iterates through each of the elements in report_strings, adding them
together and inserting the ** character sequence between each element. The Python
Command Shell will show us the result of the expression.

>>> '**'.join(report_strings)

'report1**report2**report3**report4'

>>>

MAKE SOMETHING HAPPEN

362 Chapter 10 Use classes to create active objects

This is completely legal Python and would create the string 'fred'. When Python runs
the program, it converts the string 'FRED' into an object of type string and then calls
the lower() method on that object.

Another method provided by a string object is called join(iterator). The lower()
function doesn’t accept any arguments, but the join(iterator) function is supplied
with something to iterate through. It does what its name implies. It works through the
iteration, adding each successive value to a string and joining each value to the next
with a copy of itself.

report_result = '\n'.join(report_strings)

The statement above creates a single string called report_result, which consists of all
the elements returned by the iterator report_strings, joined by a newline character.
This gives the report format that we want.

This is one long string with two asterisks between each line. If we use \n (newline) as the
joining character, we can get each line of the report on a separate line.

>>> print('\n'.join(report_strings))

report1

report2

report3

report4

>>>

If we want to just concatenate the items in the list of strings we can use join on an empty string.

>>> ''.join(report_strings)

'report1report2report3report4'

>>>

The example program EG10-16 Time Tracker with session history contains a com-
plete Time Tracker application that records individual sessions for each contact. It also
automatically upgrades older versions of the Contact class.

This application is a very good starting point for any program that you might like
to write that stores and manages information. You could replace the sessions and
contacts with albums and music tracks, salesman and sales, artists and pictures—or
anything else that you want to track.

Make music with Snaps
We have spent a while building a Time Tracker application. Now we can have some fun
and play some music. We’ll create a simple music player and then look at how we can
use Python language features to make it easier to manage music playback.

The snaps library is supplied with a folder of musical note samples that can be used
to play tunes using the snaps play_sound function. The name of each sample corre-
sponds to a particular musical note. The snaps function play_note can be used to play
one of the notes.

363Make music with Snaps

364 Chapter 10 Use classes to create active objects

Figure 10-1 shows how the note numbers are mapped onto piano keys.

1 63 8 10

0 54 9 122 7 11

Figure 10-1 Note numbers

The sound samples are held in a folder called MusicalNotes. It is very important that
this file is present in the same folder as the snaps framework. Otherwise your program
will not play sounds correctly. If you run the sample programs for this chapter from
their original folder, they will be loaded correctly.

EG10-17 Play notes

import time

import snaps

for note in range(0,13):

 snaps.play_note(note)

 time.sleep(0.5)

The example program EG10-17 Play notes will play all the notes one after the other,
with a half-second delay between each note. We can use the play_note method to
make a program that will play a tune.

EG10-18 Twinkle Twinkle

import time

import snaps

snaps.play_note(0)

time.sleep(0.4)

snaps.play_note(0)

 Work through all the note values
 Play the note

 Pause to allow the note to sound

365Make music with Snaps

time.sleep(0.4)

snaps.play_note(7)

time.sleep(0.4)

snaps.play_note(7)

time.sleep(0.4)

snaps.play_note(9)

time.sleep(0.4)

snaps.play_note(9)

time.sleep(0.4)

snaps.play_note(7)

time.sleep(0.8)

This listing program will print the first part of “Twinkle, Twinkle Little Star.” The exam-
ple program EG10-18 Twinkle Twinkle prints a slightly longer song. This program
uses a sequence of method calls that play each note in turn. If we want to play a longer
tune, we must add more lines to the program.

A better way to play the music would be to make the program data driven. Rather than
expressing the required notes as values in the method calls, we could instead express
the note and duration values as tuples.

EG10-19 Twinkle Twinkle Tuples

import time

import snaps

tune = [(0, 0.4), (0, 0.4), (7, 0.4), (7, 0.4),

 (9, 0.4), (9, 0.4), (7, 0.8), (5, 0.4),

 (5, 0.4), (4, 0.4), (4, 0.4), (2, 0.4),

 (2, 0.4), (0, 0.8)]

for note in tune:

 snaps.play_note(note[0])

 time.sleep(note[1])

Recall that a tuple is a collection of values enclosed in brackets. We create tuples to
hold related values. In the case of the tune list above, each tuple in the list holds two
values. The first is an integer that specifies the note to be played; the second is the
duration of the note. This version of the music player is smaller, and we can now create
longer tunes just by adding more note information, but it’s a little hard for other pro-
grammers to create tunes as they must know how to create the tuples and play them.

 Create a list of tuples that contain the tune

 Work through the notes in the tune
 The first element in the tuple holds the note number

 The second element in the tuple holds the note duration

366 Chapter 10 Use classes to create active objects

Perhaps we can make the code easier to understand by storing the note information
in a class:

EG10-20 Twinkle Twinkle class

import time

import snaps

class Note:

 def __init__(self, note, duration):

 self.__note = note

 self.__duration = duration

 def play(self):

 snaps.play_note(self.__note)

 time.sleep(self.__duration)

tune = [Note(note=0, duration=0.4), Note(note=0, duration=0.4),

 Note(note=7, duration=0.4), Note(note=7, duration=0.4),

 Note(note=9, duration=0.4), Note(note=9, duration=0.4),

 Note(note=7, duration=0.8), Note(note=5, duration=0.4),

 Note(note=5, duration=0.4), Note(note=4, duration=0.4),

 Note(note=4, duration=0.4), Note(note=2, duration=0.4),

 Note(note=2, duration=0.4), Note(note=0, duration=0.8)]

for note in tune:

 note.play()

This version of the tune player uses a class called Note. The Note class holds the note
number and duration of the note. These are set into each note by the __init__
method. The program creates a list of Note instances to make up the tune. The pro-
gram uses keyword arguments to identify each of the values used to create each note.

 Create a new Note instance
 Set the note to play

 Set the duration of the note

 Play the note
 Play the note sound

 Pause the program while the note sounds

 Create a list of note
instances

 Work through the notes in the list
 Get each note to play itself

Make your own music
You can modify the sample programs to make your own tunes. You can even replace the note
samples with other WAV files to change the musical instruments that play each note.

MAKE SOMETHING HAPPEN

367Make music with Snaps

The Note class
I’m quite happy with the design of the Note class. However, there are some aspects of the
design that are worth considering in detail.

Question: Why does the Note class contain a Play method?

Answer: This is all to do with “cohesion.” The process of playing a note should be
managed by a Note itself, not by something external to the Note. For code outside the
Note class to be able to play a note, the code would have to have access to the note and
duration values, which should be private to a Note. There are other advantages to struc-
turing the program this way. If we need to change the way a note is played, we just have
to change the Play method in the note and any programs that use a Note to play tunes
would just work.

Question: Could the Note have a __str__ method?

Answer: This would be a good idea. It would make printing notes very easy.

def __str__(self):

 template = 'Note: {0} Duration: {1}'

 return template.format(self.__note, self.__duration)

If we add this to the Note class, we can then print the tune very easily:

tune_strings = map(str,tune)

print('\n'.join(tune_strings))

This code uses the same structure we used to print the Sessions in the Time Tracker
application. You will find sample code that uses this in the application EG10-21 Twinkle
Twinkle printer.

CODE ANALYSIS

368 Chapter 10 Use classes to create active objects

What you have learned
You’ve learned a lot in this chapter. You learned how to create a class containing data
attributes that allow it to hold data values. When a new instance of the class is created,
these values are stored inside the object (remember that an object is an instance of a
class). The data attributes can be initialized by the __init__ method in the class, which
can be given parameter values used to set the value of data attributes in the class.

You’ve seen how Python classes can contain method attributes associated with an
instance of the class. A method attribute allows an object to be asked to perform a specific
action by calling that method. A good example of a class method is the add_session
method of the Contact class in the Time Tracker application. This class method asks the
Contact to store details of a new work session performed for that contact.

Methods in classes are very similar to Python functions, but a method is provided
with a reference (usually called self) as the first parameter of the method. The self
parameter is set automatically when the method is called and refers to the object run-
ning the method. Python statements in the method can then access attributes of that
object by using the self reference.

You also discovered that methods are fundamental to creating “cohesive” classes, with
no need to use elements of other classes to function. A cohesive object contains all
the data attributes required by that object and provides a set of method attributes so
that the object can perform the task for which it was created.

Making self-contained objects that provide behaviors for others to use is a good
way to create solutions that are easy to manage and update. Self-contained objects
can also perform validation of actions they are asked to perform, and reject invalid
requests, either by returning error messages or by raising exceptions. If a method in
an object raises an exception, the program will stop unless the caller of the method
takes steps to catch and deal with the exception.

Python provides features that can be used to protect data attributes from accidental
damage, but there’s no way we can prevent a determined programmer from making
changes to data attributes in a Python object. However, we can use source code anal-
ysis programs such as Pylint (www.pylint.org) to audit a Python program and detect
attempts to change protected data values.

You’ve seen that a class can contain “static” methods that can be used without the
need to create a class instance. Static methods are useful for things such as validation.
They make it possible to determine whether potential data attributes hold valid values
before a program tries to use them to create an instance of the class. You also encoun-
tered properties, which provide easy access to a data attribute in a class but also give
programmers the ability to get control and validate changes to the attributes.

http://www.pylint.org

369What you have learned

You discovered the importance of version management and giving a class the ability
to automatically upgrade the data stored inside it when new versions of the class
are created. You’ve added an __str__ method to a class so it can return a string that
describes the contents of the object, and you found that Python string formatting is a
useful way to create strings that contain the values of variables.

Finally, you took a close look at the very powerful iteration feature of Python, which
make it easy to perform an action on a large amount of data. An iterator is an object
that can be asked for successive elements in an iteration. The source of an iteration
can be a list of items or even another iteration. The Python map function can be used
to generate an iteration that applies a specific function to all the elements in an iter-
ation. We used this to add spaces to the beginning of strings in a list of text, thereby
indenting the text. We also used this process to convert elements in a list into strings
by using the Python str function in a map.

You also discovered the join function, which allows a string to join a list of strings to
produce a larger string. We used join to create a single string that contains session
reports from the Time Tracker application.

Here are some points to ponder about what we have learned.

Why doesn’t Python provide a way for a programmer to completely protect
data attributes in objects?

This is an interesting question. If you come from other programming languages (for
example, Java, C++, and C#), you know that they have protection mechanisms that
can mark important attributes of a class as private to that class. In these languages,
private means exactly that. Code that is not part of a class is not allowed any access to
private attributes. Python seems rather half-hearted in the way it provides some pro-
tection, but this can be circumvented. I think the reason that Python doesn’t provide
private class attributes is that the designers were concerned that programmers might
think that just because something is private means it can’t be accessed from outside
the class. However, it would be easy for a determined programmer to add a public
method to a class, or change the behavior of an existing method to corrupt the con-
tents of a class. The key to making secure code is not the writing of the code, but the
process of review you use to check the code to make sure it is secure. Python would
like programmers to engage with this review process, rather than assume that making
things private will make a program secure.

When would we use a property in our programs?

A property provides a way that a class can control access to a data attribute in that class.
One way to control access to a data attribute is to provide get and set methods for the
attribute. As an example, we could have methods called get_name and set_name to
manage the name attribute in a class. The get_name method would return the name,

370 Chapter 10 Use classes to create active objects

and the set_name method would accept a new name value and then set the name attri-
bute to this value if the new value was valid.

This would work, but it makes the code that accesses the name attribute rather long-
winded. A property binds methods to the get and set actions of a class data attribute,
but the property can be used in the same way as a data attribute. When code assigns
a value to the property, the setter behavior runs. When code accesses the property,
the get behavior runs. It is possible to create “read only” properties that don’t have the
set behavior.

I use properties when I want to manage access to data in a class, but I don’t want the
user of my class to keep calling get and set methods to access that data.

When would we create static class attributes?

The word static can be a bit confusing. It’s best to regard it as meaning “always there.”
I create static data attributes in classes when I want to store a value that gives infor-
mation about the class, rather than about an instance of the class. Static attributes are
well suited for data validation values. For example, the minimum length of a session
we spend with our lawyer client is not a property of any individual session; it is a prop-
erty of the session itself, and should therefore be stored as a class attribute. Validation
methods—for example, a method that checks a session length value for validity—
should also use static attributes, as these methods do not apply to any specific session
object and may need to be used before any sessions are created.

Must all our objects be highly cohesive?

Not necessarily. If I’m making a program to process a single set of data, and I know
it will be used only once, and only by me, I’ll write the code in a way that is probably
very poorly designed. I’ll make everything public and do whatever it takes to get the
program working with a minimum of effort. However, if I’m making a program that
I know will be subject to change and maintenance, and that other programmers will
be working on, I’ll spend a lot of time making sure that the code is easy to understand
and modify. I’ll design it so that changes to one part of the program don’t affect the
behavior of another part, and I’ll create a pattern of use and naming that is easy to
understand. I consider the code we have written for the Time Tracker application as
close to “professional” quality, so if you’re looking for a standard, you have it in the
programs in this chapter.

371What you have learned

What is an iterator again?

An iterator is an object that provides methods we can use to make it do things
for us. We can ask an iterator to give us the next value in an iteration by calling the
__next__ method on the iterator object. Some Python objects—for example, the list
type—behave as iterators so that we can work through the elements in the list. Other
objects, such as range and map objects, also behave as iterators.

It’s important to remember that the Python construction consuming the iterator
doesn’t know where the data has come from. A Python for loop will just work through
whatever iterator the loop is supplied with. The loop only knows that each time it calls
__next__, it will be given the next object in the iteration and that an exception will be
raised when there are no more elements to iterate.

11
Object-based

solution design

374 Chapter 11 Object-based solution design

Fashion Shop application
Your lawyer client is very happy with her Time Tracker application. She’s been showing
it to her friends, and they’ve been very impressed—particularly a friend who runs a
fashion shop and has been looking for an application to help her manage her stock.
She sells a large range of clothing items and needs help tracking inventory. Stock
arrives from suppliers, and she enters the details in the system. When she sells an item,
she wants to remove it from stock. She would also like a way of producing reports that
will show her how many of each item she has in stock. She’s keen to get your help, and
she’s offering discounted prices, or even free clothing, in exchange.

Free fashion sounds like an interesting idea, so you sit down with your new client and
talk about what she wants to do. She shows you her stock folder, which you can see in
Figure 11-1.

Figure 11-1 Fashion shop stock file

She tells you that each item she receives from her suppliers has a unique stock ref-
erence that she uses to track that item. She has a large binder with a page per stock
item. When she gets something she hasn’t stocked before, such as a new style of dress,
she creates a new page for that type of item and adds it to the folder. Then, when she
receives stock deliveries, she can look up the stock reference in the binder and update
the stock level for that item. Figure 11-2 shows a page in the folder.

375Fashion Shop application

Figure 11-2 Fashion shop stock page

This page holds details of a dress that she sells. Each item of clothing in stock has a page
in the binder that is updated as stock arrives and is sold. Currently, Mary would be happy
with the ability to just print out her entire stock list, but later she wants to be able to do
things such as determine which item has the lowest stock levels so that she can place
orders for new stock. You agree on the following main menu for the application:

Mary's Fashion Shop

1: Create new stock item

2: Add stock to existing item

3: Sell stock

4: Stock report

5: Exit

Enter your command:

376 Chapter 11 Object-based solution design

There are five options. The first menu item is used to create a new stock item. This is
equivalent to adding a new page to the stock binder to describe a new item being
stocked in the shop. The second menu item is used to add stock to an existing item
type. This updates the page for an item and increases the number in stock. The third
menu item is used when an item is sold; the fourth item produces a stock report
when selected.

Application data design
The shop sells a range of different clothing items, and each item has a particular set
of information that describes that item. For every item of clothing, she needs to store
the stock reference, the price, the color, and the number of units in stock. For a dress,
she wants to store the size, the style, and the pattern. For pants, she wants to store the
length, waist size, style, and pattern. For hats, she just stores the size. For blouses, she
wants to store size, style, and pattern. Some typical descriptions look like this:

Dress: stock reference: 'D0001' price: 100.0 color: red pattern: swirly size: 12

Pants: stock reference: 'TR12327' price:50 color: black pattern: plain length: 30

waist: 30

We can do some data design to identify how we’ll store the stock data. Data design is
performed at an early stage in application design. It is where we identify and specify
how we will represent the data with which the application will work.

Object-oriented design
It would make sense to create a class to hold each kind of data we wish to store.
Programmers call this object-oriented programming. The idea is that elements in a
solution are represented by software “objects.” The first step in creating an application
is to identify these objects.

In the English language, words that identify things are called nouns. When trying to
work out what classes a system should contain, it’s a good idea to look through the
description of a system and find all the nouns. As an example, consider the following
description of a fast-food delivery application.

“The customer will select a dish from the menu and add it to his order.”

I’ve identified four nouns in the description, each of which will map to a specific class
in the application. If I were working for the fast-food delivery company, I would next
ask them what data they stored about customers, dishes, menus, and orders.

377Fashion Shop application

PROGRAMMER’S POINT

Don’t write any code before you have completed your data design
For a commercial project, you would spend a lot of time on the design of the classes in your
system before you wrote a single line of code. This is because design mistakes are much
easier to fix at the beginning of the project, rather than after code has been written.

In the case of our fast-food management example above, we would want to make sure that
the customer class holds all the information required to make the business work. We would
do this by creating “paper” versions of the classes and then working through all the usage
scenarios (creating an order, cooking an order, delivering an order) to make sure that all the
data the application needs is being captured.

If the application must store a customer telephone number so that the delivery driver can
call for directions if needed, it is best to discover this at the beginning of the project, rather
than after the entire user interface has been created.

We will write code and discuss it as we go along because we are learning about data design
and Python programming. However, if I were creating a professional solution, I’d spend a
lot of time away from Python working out the design before I created any classes.

When we talk to our fashion shop customer, she’ll talk about the dresses, pants, hats,
blouses, and other items that she wants the application to manage. Each of these
could be objects in the application and can be represented by a Python class. Each
class will contain the data attributes that describe that item of clothing. Let’s start by
considering just the information for dresses and pants and create some classes for
these objects.

EG11-01 Separate classes

class Dress:

 def __init__(self, stock_ref, price, color, pattern, size):

 self.stock_ref = stock_ref

 self.__price = price

 self.__stock_level = 0

 self.color = color

 self.pattern = pattern

 self.size = size

 @property

 def price(self):

 return self.__price

378 Chapter 11 Object-based solution design

 @property

 def stock_level(self):

 return self.__stock_level

class Pants:

 def __init__(self, stock_ref, price, color, pattern, length, waist):

 self.stock_ref = stock_ref

 self.__price = price

 self.__stock_level = 0

 self.color = color

 self.pattern = pattern

 self.length = length

 self.waist = waist

 @property

 def price(self):

 return self.__price

 @property

 def stock_level(self):

 return self.__stock_level

x = Dress(stock_ref='D0001', price=100, color='red', pattern='swirly', size=12)

y = Pants(stock_ref='TR12327', price=50, color='black', pattern='plain', length=30,

waist=25)

print(x.price)

print(y.stock_level)

The code above defines a Dress class and a Pants class. Each class contains an
__init__ method that a program can use to set up the contents of that class. At the
end of the code sample, there are two statements that create a Dress and a Pants
instance. The price and stock level data attributes have been made private because
the application will have to carefully manage the price and stock level of items in the
shop. I’ve given their names two leading underscores to indicate that they are private
to their class.

Each class contains properties to provide access to their price and stock_level
attributes. We saw properties in Chapter 10 and used them to store the name, address,
and telephone number of a contact. Here we’re using properties to provide access to
the price and stock_level attributes of the stock items in the classes. The idea is that
these attributes will be set when an item is created, and we’ll create some more meth-
ods to manage the price and stock level later, once we have decided how the data will
be stored.

379Fashion Shop application

I could have made all the other data attributes (for example stock_ref, color, and
pattern) private in the same way, but the fashion shop owner and I can’t think of a
reason why it would be dangerous to have these attributes accessible outside the class.

When I wrote this sample code, I found myself using a lot of block-copy commands in
the editor. This is not a good thing.

PROGRAMMER’S POINT

Block copy is not your friend
The IDLE editor will let you select a block of Python statements and copy them into another
point in your program. I call this action “block copy.” And it is not your friend.

When writing the code for the Dress and Pants classes, you might think it is efficient pro-
gramming to just block copy the repeated elements from one class to another. However,
this is not a good idea. If you are copying the same code from one part of your program to
another, you are not programming most efficiently. A good programmer will try to write
a piece of code exactly once. If the code is used more than once in an application, a good
programmer will convert the code into a method or function and then call the method
each time it’s needed.

However, this is not about making sure that our programs are as small as we can make
them. It’s about self-preservation. If you block copy a piece of code into lots of different
places in your application, you’ll have a real problem if you find a bug in the copied code.
You’ll need to go through your entire application and fix all the broken copies of that code.
On the other hand, if you find a bug in a method, you can fix it just once, and it is fixed for
every situation in which that method is used. Fortunately, there is a way we can remove the
need for numerous copies of the same code, which we will discuss now.

If I find myself copying program text from one place to another, I take this as a trigger to
step back from the problem and think about different ways of structuring my solution.

Creating superclasses and subclasses
Python classes support a mechanism called inheritance. This is another aspect of
object-oriented design. Inheritance lets us base one class on an existing superclass. This
is called extending the superclass. In fact, we’ve been doing this already, every time we
created a new class in our Python programs. If we don’t specify otherwise, all Python
classes extend the object class, which is the class on which all Python objects are based.
The explicit way of stating this is as follows, which we do when we create a new class:

class Contact(object):

380 Chapter 11 Object-based solution design

The type in parentheses is the superclass being extended. The above definition for a
class called Contact is explicitly extending the object class. If you leave out the super-
class type, Python assumes that you’re extending the object class.

We can greatly simplify the design of our classes for the Fashion Shop program by
creating a superclass, which we can call StockItem.

The StockItem class will store all the attributes common to all the data items in the
shop. These are the stock reference, price, color, and stock level. The Dress and Pants
classes will extend the StockItem class and add the attributes particular to dresses and
pants. Figure 11-3 shows the arrangement of the classes we’re creating. In software
design terms, this is called a class diagram.

object

StockItem

stock_ref
item_name
color
price
stock_level

Dress

pattern
size

Pants

length
pattern
waist

Inheritance

Figure 11-3 Fashion Shop class diagram

The class diagram shows the relationship between classes in a system. Figure 11-3
shows that both Pants and Dress are subclasses of the StockItem class (meaning they
are based on that class). We could also say that the StockItem class is the superclass of
Dress and Pants.

381Fashion Shop application

In real life, inheritance means stuff that you get from people who are older than you. In
Python terms, inheritance means the attributes a subclass gets from its superclass. Some
programmers call the superclass the parent class and the subclass the child class.

The key to understanding inheritance is to focus on the problem we’re using it to
solve. We’re working with a collection of related data items. The related items have
some attributes in common. We want to implement the shared attributes in a super-
class and then use this superclass as the basis of subclasses that will hold data specific
to their item type. That way, we only need to implement the common attributes once,
and any faults in the implementation of those attributes need only be fixed once.

Working in this way has another advantage. If the fashion shop owner decides that
she would find it useful to be able to store the manufacturer of the items she’s selling,
we can add a manufacturer attribute to the StockItem class, and all the subclasses
will inherit that attribute, too. This will be much easier than adding the attribute to
each class.

Abstraction in software design
Another way to think of this is to consider what we are doing regarding abstraction.
Abstraction is another term that has a particular meaning when we are talking about
object-oriented design. It means “stepping back” from the objects in an application
and taking a more general, or abstract, view of them.

In our conversations with the fashion shop owner, we would like to talk in general
terms about the things she would like to do with the stock in her shop. She will want
to add stock items, sell stock items, find out what stock items she has, and so on. We
can talk to her about her stock in general terms and then later go back and fill in the
specific details about each type of stock and give them appropriate behaviors.

Programmers use abstraction a lot. They talk about things like stock items, customers,
and orders without considering specific details. Later, they can go back and “fill in the
details” and decide what particular kinds of stock items, customers, and orders with
which the application will work. We’ll create different kinds of stock items in our Fash-
ion Shop program, and the StockItem class will contain the fundamental attributes for
all the stock, and the subclasses will represent more specific items.

The diagram in Figure 11-3 is called a class hierarchy. It shows the superclass at the
top and subclasses below. When you travel down a class hierarchy, you should find
that you move from the abstract toward the more concrete. The most abstract class
in Figure 11-3 is the object class, which is the superclass of every object in the Python
program. The least abstract classes are Pants and Dress because these represent
actual physical objects in our application.

Understanding inheritance
Here are some questions about object-oriented design and inheritance. Try to come up with
your own answers before reading the answers I’ve provided.

Question: Why don’t we put all the data attributes in one class and not bother with subclasses?

Answer: This is a very good question. Rather than having Dress and Pants classes, we
could add length, pattern, size, and waist data attributes to the StockItem class
and then store everything as an instance of the StockItem class. As we find new kinds of
stock items, we just need to add new data attributes to describe them.

However, this would be hard to manage. When I wanted to print the details of a pair of
pants, the application would need to know to print the length and waist data attributes
and not the size. This means that the StockItem class would need to hold a “stock type”
data attribute and use this to decide what to do when asked to perform actions. This
would be difficult to implement and manage.

Later in this chapter, we’ll discover a feature of object-oriented design called polymor-
phism, which allows an object to provide behaviors appropriate to its object type. For
now, just accept that putting everything in one class would be a bad idea.

Question: Why is the superclass called super?

Answer: This is another good question and one that has confused me for a long time.
The word super usually implies something better, or more powerful. A “superhero” has
special powers that ordinary people do not. However, in the case of a superclass, this
doesn’t seem to be the case. The superclass has fewer powers (fewer attributes) than the
subclass that extends it. The ultimate superclass in Python is the object class. This, by
definition, has the fewest attributes because everything else adds to it.

I think the word super makes sense if you consider it as something from which classes
descend. The super object is above the sub object, just like superscript text is above sub-
script text. The object is the superclass because it is above everything else.

Question: Which is most abstract, a superclass or a subclass?

Answer: If you can work out the answer to this question, you can start to consider your-
self an “object-oriented ninja.” Remember that we use abstraction as a way of “stepping
back” from the elements in a system. We’ll say “receipt” rather than “cash receipt” or
“StockItem” rather than “Pants.”

If you look at the class diagram in Figure 11-3, you will see that the higher up the diagram
you go, the more abstract things get, until we reach the most abstract class of all, which
is an object. Objects are the superclass of all classes, and also the most abstract (more so
than a subclass).

CODE ANALYSIS

382 Chapter 11 Object-based solution design

Question: Can you extend a subclass?

Answer: Yes, you can extend a subclass. In fact, we have already done this. In Figure
11-3, you can see that the Dress class extends the StockItem class, which itself extends
the object class. In Python, there is no limit to how many times you can extend classes,
although I try to keep my class diagrams fairly shallow, with no more than two or
three subclasses.

Question: Why is the pattern attribute not in the StockItem class?

Answer: Most impressive. Well spotted. The pattern attribute is in both the Dress and
Pants classes. It might seem sensible to move the attribute into the StockItem class with
the color, stock_level, and price attributes.

The reason I haven’t done this is that I think that the fashion shop might sell some stock
items that have no pattern—for example, items of jewelry. I want to avoid a class having
data attributes that aren’t relevant to that item type, so I’ve put pattern values into the
Dress and the Pants class instead.

I’m not particularly happy with this, in that ideally an attribute should appear only in one
class, but in real-world design, you come across these issues quite often. One possible
way to resolve the issue would be to create a subclass called “PatternedStock” that is the
superclass for Dress and Pants, but I think that would be too confusing.

Question: Will our system ever create a StockItem object?

Answer: The Python system will allow the creation of a StockItem object (an instance of
the StockItem class), but it’s unlikely that we would ever actually create a StockItem on
its own.

Some programming languages, for example, C++, Java, and C# allow you to specify that a
class definition is abstract, which stops a program from making instances of that class. In
these languages, an abstract class exists solely as the superclass for subclasses. However,
Python does not provide this feature.

Question: The owner of the fashion shop thinks that one day she might like to keep track of
which customer has bought which item of stock. That way she can look at their past pur-
chases and make recommendations for future purchases. Here are three ways to do this.
Which would make the most sense?

1. Extend the StockItem class to make a Customer subclass that contains the customer
details because customers buy StockItems.

2. Add Customer details to each StockItem.

3. Create a new Customer class that contains a list of the StockItems that the Customer
has bought.

383Fashion Shop application

Answer: Option 1 is a bad idea because a class hierarchy should hold items that are
in the same “family.” In other words, they should all be different versions of the same
fundamental type. We can see that there is some association between a Customer and
a StockItem, but making a Customer a subclass of StockItem is a bad idea because
they’re different kinds of objects. The StockItem holds attributes such as price and
stock_level, which are meaningless when applied to a Customer.

Option 2 is a bad idea because several customers might buy the same StockItem. The
customer details cannot be stored inside the StockItem.

Option 3, adding a new Customer class, is the best way to do this. Remember that
because objects in Python are managed by references, the list of clothing items in the
Customer class (the items the customers have bought) will just be a list of references, not
copies of StockItem information.

384 Chapter 11 Object-based solution design

Store data in a classes hierarchy
Now that we’ve decided using inheritance is a good idea, we need to consider how to
make it work with our classes.

class StockItem(object):

 '''

 Stock item for the fashion shop

 '''

 def __init__(self, stock_ref, price, color):

 self.stock_ref = stock_ref

 self.__price = price

 self.color = color

 self.__stock_level = 0

 @property

 def price(self):

 return self.__price

 @property

 def stock_level(self):

 return self.__stock_level

This is the StockItem class file. It contains an __init__ method to set up an instance of
the class. The StockItem class will be the superclass of all the objects that the fashion
shop will be selling. The StockItem class extends the object class. We can create a

 StockItem class explicitly extends the object class

 Initializer for the StockItem class

 Initial stock level for the item is zero

 Price property

 Stock level property

385Fashion Shop application

Dress class that is a subclass of the StockItem class to hold information about dresses
that the fashion shop will be selling.

EG11-02 Stock Item class failed

class Dress(StockItem):

 def __init__(self, price, color, pattern, size):

 self. pattern = pattern

 self.size = size

The Dress class is a subclass of the StockItem class, which we indicated by providing
the superclass name when we declared the class. However, we have a problem if we
try to use this version of the Dress class:

x = Dress(stock_ref='D0001', price=100, color='red', pattern='swirly', size=12)

The statement above creates an instance of the Dress class with the name x. This
statement will not generate any errors when it runs, but we will have problems if we
try to use some of the properties of the Dress object created by the statement.

print(x.pattern)

swirly

print(x.price)

Traceback (most recent call last):

 File "<pyshell#103>", line 1, in <module>

 print(x.price)

 File "C:/Users/Rob/ EG11-02 Stock Item class failed.py", line 16, in price

 return self.__price

AttributeError: 'Dress' object has no attribute '_StockItem__price'

The pattern attribute prints correctly, but if I try to print the price property of the
Dress instance, the program fails with an error saying that there is no price attribute.
In fact, the message says that there is no _StockItem_price attribute. If you think
about it, this is a reasonable error.

The __init__ method in the Dress has set up the pattern and size attributes in the
Dress, but nothing has set up the stock_level, price, stock_level and color data
attributes in the StockItem on which the Dress is based.

 Dress is a subclass of StockItem

 Pattern prints correctly
 Price does not print

386 Chapter 11 Object-based solution design

If we want the StockItem part of the Dress object to have stock_level, price,
stock_level, and color data attributes, we need to call the __init__ method for the
StockItem class and pass these values into it.

EG11-03 Stock Item class super init

class Dress(StockItem):

 def __init__(self, stock_ref, price, color, pattern, size):

 super().__init__(stock_ref=stock_ref, price=price, color=color)

 self. pattern = pattern

 self.size = size

This is a version of the Dress __init__ method that calls the __init__ method in the
StockItem class. Python provides a function called super() that can be used to obtain
a reference to the superclass in an object. The super method returns a reference to
the super object. We can then call the __init__ method on that reference, feeding in
the price and color values. If this seems confusing, we can break this single statement
down into two:

super_object = super()

super_object.__init__(stock_ref=stock_ref, price=price, color=color)

The first statement gets a reference to the super object. The second statement calls
the __init__ method on the object to which the reference refers. The parameter
values of stock_ref, price, and color are passed into this call, and used to set up the
attributes in the StockItem. This looks a little confusing because we’re using keyword
arguments in the call to the __init__ method. It looks like we’re doing things like set-
ting price to price (price=price), whereas we are really copying the price value received
as a parameter into the price argument we’re sending to the __init__ method.

When you create a subclass, you have to make sure that the initialization process of
the subclass explicitly initializes the superclass as well.

 Dress is a subclass of StockItem

 Call the
__init__

method in the
super object

 Get a reference to the super object
Call the

__init__
method in the

super object

387Fashion Shop application

The super function in Python 2.7
The use of the super function will work in Python 3.6, but in Python 2.7 it will generate an
error. The super function in Python 2.7 needs to be provided with two arguments:

 ● The class in which the super function is running

 ● A reference to the object being initialized

 super(Dress, self).__init__(stock_ref, price, color)

This format will work in Python 3.6 as well as Python 2.7.

WHAT COULD GO WRONG

Manage the item name in the Fashion Shop program
We’ve created classes to represent the stock items in the fashion shop. The name of
each class matches the type of stock being stored. However, the fashion shop owner
might not want to give her stock items names that match Python class names. We
would not be able to create a class called “Evening Dress” because the string con-
tains a space and is therefore not a valid Python name. The fashion shop owner will
not want to see an item described as an “Evening_Dress” just because that is a valid
Python identifier, so we must devise a way of providing a “friendly name” for each of
the classes in our hierarchy.

It turns out that I’ve already thought of this. If you look carefully at the class
diagram in Figure 11-3, you’ll see that the StockItem class contains something called
item_name. This is intended to hold the name of this type of object. It will contain a
string that provides a “friendly” name for the item of that type of data. The best way
to provide this information is as a property of the class.

class StockItem(object):

 @property

 def item_name(self):

 return 'Stock Item'

Method overriding in classes
Overriding means, “superceding a method in a superclass with one in the subclass.” We can
find out how it works by using the IDLE Command Shell. Open it and enter this statement:

>>> o = object()

MAKE SOMETHING HAPPEN

388 Chapter 11 Object-based solution design

The code above shows the item_name property in the StockItem class. It looks like the
price and stock_level properties, except that it returns the string 'Stock Item'. Each
of the child classes can override this property to return their name:

class Dress(StockItem):

 @property

 def item_name(self):

 return 'Dress'

Remember, if you override an attribute in a subclass, that attribute is used instead of
the superclass attribute. An attempt to get the item_name property of a Dress object
would result in the item_name code for Dress being obeyed, and the Dress string
being returned.

Add an __str__ method to classes
Objects can produce a string description of themselves. The class describing an object
can contain an __str__ method that is called to return a string description of the con-
tents of the object. We added __str__ methods to the Contact and Session classes
to make it easy to view the contents of these objects. Now, we’ll add __str__ methods
to the objects in our Fashion Shop application, which will allow us to view the contents
of those objects.

Adding an __str__ method to a class replaces the method in the object on which
the class is based. Programmers talk about overriding a method in a superclass. Let’s
investigate how this works.

This statement creates an object instance referred to by the variable o. We’ve created
Contact and Session objects in previous chapters, but we can also create instances of the
object class if we wish. Now we can print the value in the object referred to by o. Type in the
call of the print function below and press Enter.

>>> print(o)

The print function uses the method str to convert an object to a string before printing it.
The str function calls the __str__ method on an object to return a description of the con-
tents of the object. So, this statement will show us what the __str__ method in the object
class returns.

>>> print(o)

<object object at 0x0000020B57A59070>

The __str__ method in the object class returns a string that indicates, “This is an object
of type object” and gives the object’s address stored in memory. We’ve seen this behavior
before when we tried to print the contents of a Contact:

<__main__.Contact object at 0x0000018E5E9EBB70>

We saw this because the Contact value was using the __str__ method of its superclass,
which is the object class. Now let’s create a class of our own that overrides the __str__
method. Enter the following definition of a class called StrTest. Remember to enter a blank
line at the end of the definition to mark the end of the class.

>>> class StrTest(object):

 def __str__(self):

 return 'string from StrTest'

>>>

The StrTest class contains an __str__ method that returns the string string from
StrTest. This __str__ method overrides the __str__ method in the object superclass.
Attempts to get the string representation of an StrTest object will use the __str__ method
in StrTest. Prove this by creating an StrTest instance and then printing it.

>>> t1 = StrTest()

>>> print(t1)

string from StrTest

389Fashion Shop application

When the print method gets the string description of an StrTest object, the string from
StrTest string is returned (just like with Contact and Session classes). Now, let’s add
another class.

>>> class StrTestSub(StrTest):

 def __str__(self):

 return super().__str__() + '..with sub'

>>>

This class is a subclass of StrTest. In other words, it extends the superclass. It contains a
__str__ method that overrides the __str__ method in the StrTest superclass. However,
this method doesn’t return a fixed string. Instead, it returns the result of the __str__ method
in the superclass, as well as some extra text. We can see this behavior if we make an instance
of the new class and print it:

>>> t2 = StrTestSub()

>>> print(t2)

string from StrTest..with sub

The first part of the printed string was generated by the __str__ method in the
StrTest class. The second part of the string was generated by the __str__ method in
the StrTestSubclass, which illustrates an important aspect of method overriding: an
overriding method in a subclass can call the method that it is overriding.

390 Chapter 11 Object-based solution design

Now that we know how to override the __str__ method, we can provide these
methods for the StockItem, Dress, and Pants classes.

class StockItem(object):

 def __str__(self):

 template = '''Stock Reference: {0}

Type: {1}

Price: {2}

Stock level: {3}

Color: {4}'''

 return template.format(self.stock_ref, self.item_name,

 self.price, self.stock_level, self.color)

 StockItem based on the object class

 Definition of the __str__ method for StockItem

 Create a string template

 Insert the
values into

the template

391Fashion Shop application

Above, you can see the __str__ method for the StockItem class. The __str__ method
for the StockItem class looks remarkably like the __str__ methods in the Contact and
Session classes that we created in Chapter 10. It creates a template string and then fills
this in with data attributes and properties from the object.

You might be wondering why we are making a __str__ method for the StockItem
class when this class is the superclass of the other classes in our system. The program
will create instances of classes, such as Dress, but will not create StockItem objects.
Why would we give this class a __str__ method?

The answer lies in something we discovered in the previous “Make Something Hap-
pen.” A method that overrides another can still call the overridden method. The best
way for a subclass of StockItem to get a string describing the contents of a StockItem
is for the __str__ method in the subclass to use the __str__ method in the superclass.

class Dress(StockItem):

 def __str__(self):

 stock_details = super().__str__()

 template = '''{0}

Pattern: {1}

Size: {2}'''

 return template.format(stock_details, self.pattern, self.size)

We’ve used the super() function before to locate the super object of a clothing class so
that we could call the __init__ method in that object to set it up. Here, we’re using the
super() function to locate the super object so that we can ask it for a string description
of its contents. Then, we can add the resulting string to the description for this class.

EG11-04 Stock Items with str

x = Dress(stock_ref='D001', price=100, color='red', pattern='swirly', size=12)

print(x)

Stock Reference: D001

Price: 100

Stock level: 0

Color: red

Pattern: swirly

Size: 12

Above, you can see the results of creating a Dress instance and printing it. The first
three lines of the description string are produced by the StockItem class; the last two
lines are added by the __str__ method in the Dress class.

 Dress based on the StockItem class

 __str__ method for Dress
 Get the StockItem description text

 Template location for StockItem description

392 Chapter 11 Object-based solution design

Version management in the Fashion Shop program
When we created the Contact and Session classes for the Time Tracker application in
Chapter 10, we spent some time ensuring that changes to these classes did not pre-
vent the application from working with older data files. Each time an object is loaded
into the Time Tracker application, the version number of the object is checked, and if
required the object is updated to the latest version. We need to consider how versions
of classes will be managed in the Fashion Shop application, too.

The first question we need to consider is, “Where should the version numbers be
stored if we’re using a class hierarchy?” In the Time Tracker application, the Session
and Contact classes both contained a version number attribute. In the Fashion Shop
application, the Dress class is a subclass of the StockItem class. We put the version
number in the StockItem class and in the Dress class. Each class will have a check_
version method. The check_version method in the Dress class will use super to call
the check_version in the super object, which will ensure that the StockItem class is
kept up to date.

Understanding method overriding
Here are some questions about method overriding that you might be pondering.

Question: How does method overriding work?

Answer: When Python wants to call a method on an object, it looks first at the object
itself to see if it has a method with the specified name. If the method isn’t found, Python
searches the superclass to find that method. If the method is found in the superclass,
Python runs the method. If the method still isn’t found, Python will look in the superclass
above that class, and so on, until either the method is found or Python runs out of super-
classes to search, and an AttributeError is raised.

We can get a description for our original Dress class (which didn’t contain a __str__
method) because Python finds a __str__ method in the super object class.

Question: Is an overriding method forced to call the method it is overriding?

Answer: No. It should only do this if there is an advantage in doing so. The __str__
method in the Dress class should call the __str__ method in the super object. If I change
the data attributes in the StockItem class, I can change the behavior of the __str__
method for StockItem. Then, all the classes based on it receive an updated description.

CODE ANALYSIS

393Fashion Shop application

class StockItem(object):

 '''

 Stock item for the fashion shop

 '''

 def __init__(self, stock_ref, price, color):

 self.stock_ref = stock_ref

 self.__price = price

 self.__stock_level = 0

 self.__StockItem_version = 1

 self.color = color

 def check_version(self):

 # This is version 1 - no need to update anything

 pass

These are the __init__ and check_version methods for the StockItem class. Because
this is version 1 of the StockItem, the check_version method doesn’t need to check
for upgrades because there are none.

EG11-05 Stock Items with version

class Dress(StockItem):

 def __init__(self, stock_ref, price, color, pattern, size):

 super().__init__(stock_ref, price, color)

 self.pattern = pattern

 self.size = size

 self.__Dress_version = 1

 def check_version(self):

 # This is version 1 - no need to update anything

 super().check_version()

 pass

These are the __init__ and check_version methods for the Dress class. They
manage version numbers in a comparable way, except that the check_version
method in the Dress class contains a call of the check_version method in the parent
StockItem class. We can treat the superclass and the subclass as separate regarding
version control.

 Initialize the StockItem value

 Store the version number in a private
variable in the StockItem class

 Called to check the version of the StockItem

 Called to check the version of the Dress

 Check the version of the superclass StockItem

Understanding polymorphism
Here are some questions about polymorphism. Try to answer these questions yourself before
reading the answers that I’ve provided.

Question: Is polymorphism all about providing methods in a class hierarchy?

Answer: This is a very good question. The answer is no, but this requires some explana-
tion. In our examples from this chapter, we have a class hierarchy that has a superclass
called StockItem. We have identified an action—check what version of data you contain
and upgrade it if necessary— that all objects in the hierarchy need to perform. We’ve
assigned the action to a method (check_version), and we’ve added check_version
methods to all the objects in our class hierarchy. We can ask any of the subobjects of
StockItem to check its version. The result depends on the object itself.

CODE ANALYSIS

394 Chapter 11 Object-based solution design

Polymorphism in software design
The next thing I want to talk about has the most impressive name in the entire book.
The word polymorphism comes from the Greek language and means “the condition of
occurring in multiple forms.”

Overriding the __str__ method in a class is a great example of polymorphism at
work. All objects in a Python program can be asked to provide a text description of
their contents. This works because each object has an __str__ method that provides
details of the contents of that class. In other words, when Python says to an object,
“Give me a string version of yourself” the object can be made to do the right thing,
whatever type of object it is.

An application may contain many __str__ methods in different classes, each of which
will provide a string self-description for the object to which it applies. The __str__ in a
Contact will deliver the description of a Contact, whereas the __str__ in a Dress will
describe a dress.

Software frequently uses polymorphism. Many programs include a Play button, which
starts playback of content, such as music, video, or a slide show, which is another good
example of how a program can be polymorphic.

Polymorphism is a powerful design tool, and it goes hand in hand with abstraction.
We’ve seen that abstraction means “stepping back from a system” so that we can
talk in general terms about an account rather than specifically a credit card account
or a savings account. We can create a method (perhaps called withdraw_funds) in
our superclass to denote a need for an action, such as withdrawing money from an
account. Each subclass that extends the superclass can override that method with the
behavior that works for that subclass type.

However, we can add a check_version method to any class in an application; the
check_version method doesn’t have to be in the StockItem class hierarchy. If the
Fashion Shop application starts storing customer records using a class called Customer,
it would make good sense to add a check_version method to that class as well. The
check_version method can be used in any object it has loaded.

Therefore, polymorphism can be used across an entire range of classes.

Question: How do I know which methods in my application should be polymorphic?

Answer: During the design phase, you’ll identify behaviors that will be performed by
different objects but must work differently for each object. For example, you might be
writing a video game that includes many types of attacking aliens. You might decide to
create a class hierarchy for each type of alien even though each type will share behaviors,
such as “attack” and “take damage.” The actions taken by each type of alien will differ
depending on the alien, but it is very useful for the game to be able to regard aliens
purely regarding their ability to attack and take damage.

395Fashion Shop application

Protect data in a class hierarchy
In Chapter 10, we developed the Contact and Session classes in the Time Tracker
application. We decided that some attributes of these classes would benefit from
special protection within the application. For example, we made the __hours_worked
value in the Contact class private to that class. It is worth considering how the privacy
attribute is managed in a class hierarchy.

class StockItem(object):

 '''

 Stock item for the fashion shop

 '''

 def __init__(self, stock_level, price, color):

 self.stock_level = stock_level

 self.__price = price

 self.__stock_level = 0

 self.color = color

This is part of the __init__ method for the StockItem class. In Python, a class attri-
bute with a name beginning with two underscores is regarded as private to the class
where it was declared. In other words, the __price and __stock_level attributes
created in the StockItem class can only be used by methods in the StockItem class.

 Stock reference has been made public
 Price has been made private

 Stock level has been made private
 Color is public

396 Chapter 11 Object-based solution design

However, the color attribute has been made public (there are no leading underscore
characters), so that subclasses can use this value. When you design a class hierarchy,
you need to think about how data will be used in classes at each level. I’ve decided
that it is important that the price and stock level of items be given some protection so
that we can control how they are changed. However, an item’s color is less important.

Data design recap
At this point, let’s recap our Fashion Shop application development:

Your customer is the owner of a fashion shop that sells several types of clothing.

She wants you to create an application to manage information about the dresses,
pants, blouses, and hats she sells.

All clothing items have a stock reference, price, stock level (how many of that item are
in the shop), and color attributes.

Also, each clothing item has a specific set of attributes (for example, dresses have size
and pattern attributes, while pants have pattern, waist, and length attributes).

To help us avoid having to duplicate the code that manages price, color, and
stock level attributes (which are common to all the stock items), we have created a
StockItem class to manage these attributes.

The Dress, Pants, Hat and Blouse classes are subclasses of StockItem, which means
the subclasses inherit the price, color, and stock level attributes from StockItem and
can then add their own attributes to these.

Each of the classes we’ve created has an __init__ method that is called to initialize
instances of that object. The __init__ methods in the subclasses contain a call to
the __init__ method of the StockItem class, which sets that up in the “super” object.
These methods use the function super(), which returns a reference to the super
object. Once the __init__ method in a sub class has this reference it can call __init__
on this reference to set up the super object.

We’ve added a check_version method to all the classes in the Fashion Shop applica-
tion, as we did for the Contact and Session classes in the Time Tracker application in
Chapter 10.

Data design
Here are some questions about our data design. Try to answer these questions yourself
before reading the answers that I’ve provided.

Question: Is the data design now complete?

Answer: No. However, I’m not too worried about this. In addition to data design, we’ve
also developed a strategy (using the check_version methods) that will make it very easy
for us to add new attributes to our data storage design, even after we’ve released the first
version of our application. If we find that some classes need to be modified, we have a
framework for doing so.

Question: What happens if the fashion shop owner decides to sell a new kind of stock item?
Suppose that she decides to start stocking Jeans. Jeans are managed in the same way as
pants, except that they have a style property that can be flared, bootleg, or straight.
What’s the best way to do this?

Answer: The good news is that we can do this by just adding a new subclass to the hier-
archy. It would seem sensible to extend the Pants class to make a new subclass that just
holds the extra information about Jeans.

class Jeans(Pants):

 def __init__(self, stock_level, price, color, pattern, length, waist, style):

 super().__init__(stock_level, price, color, pattern, length, waist)

 self.style = style

 self.Jeans_version = 1

 @property

 def item_name(self):

 return 'Jeans'

 def check_version(self):

 # This is version 1 - no need to update anything

 super().check_version()

 pass

 def __str__(self):

 pants_details = super().__str__()

 template = '''{0}

Style: {1}'''

 return template.format(pants_details, self.style)

 Extend the Pants class
 Initialize the parent Pants

 Set the style for the Jeans
 Add version management

 Property to return the name of the item

 Return “Jeans” as the item name

 Version management for Jeans

 Check the version of the parent Pants

 Get string description of some Jeans
 Get the parent description string

 Create the template

 Return the string

CODE ANALYSIS

397Fashion Shop application

Question: What happens if the fashion shop owner decides to store something new about
her stock? Suppose she decides to add a “location” attribute to her stock items. The location
would be a string, such as “Hanging rail at the front of the shop.” When she adds stock to the
system, she would like to enter the location string for that item. In the future, she would like
to create a “fashion assistant” application that will allow customers to search for items they
might like to buy. When the application suggests items to wear, it can also tell the customer
where they are located in the shop. How would we add this attribute, and to which class
would it be added?

Answer: Because all items in the shop would need this location property, we could
add it to the StockItem class __init__ method so that it is set whenever a stock item
is created.

class StockItem(object):

 '''

 Stock item for the fashion shop

 '''

 def __init__(self, stock_ref, price, color, location):

 self.stock_ref = stock_ref

 self.__price = price

 self.__stock_level = 0

 self.color = color

 self.location = location

This is part of the updated __init__ method for the StockItem class, which adds a new
attribute called location. We can now specify the location of an item of stock when we
create it. The problem with this change is that it breaks our application:

Traceback (most recent call last):

 File "C:/Users/Rob/FashionShop.py", line 198, in <module>

 new_item = get_new_item()

 File "C:/Users/Rob//FashionShop.py ", line 165, in get_new_item

 pattern=pattern, size=size)

 File "C:/Users/Rob//FashionShop.py ", line 42, in __init__

 super().__init__(price, color)

TypeError: __init__() missing 1 required positional argument: 'location'

 Added location parameter
to __init__ method

 Set the location attribute

398 Chapter 11 Object-based solution design

This is what happens if we try to create a new Dress object after we’ve modified
the __init__ method for the StockItem class. The problem is that the __init__
method for the Dress class doesn’t supply a location value when it calls the
__init__ method for its StockItem super object. I now must modify the Dress
class to add the location argument to the call of __init__ in the super object:

class Dress(StockItem):

 def __init__(self, stock_ref, price, color, location, pattern, size):

 super().__init__(stock_ref, price, color, location)

 self.pattern = pattern

 self.size = size

 self.Dress_version = 1

This is the modified __init__ method for the Dress class. It now accepts a location
string and passes this string into the call to __init__ for the superclass. Next, we must
go through all the subclasses (Pants, Hat, and Blouse) in the application and change
their __init__ methods, too.

Class hierarchies are very brittle. In other words, they’re easy to break. Changes to classes
at the top of the hierarchy may result in you having to modify code in many subclasses.
Therefore I strongly encourage programmers to design their classes on paper before
they try to write any program code. Otherwise, a lot of time can be wasted updating
classes to reflect changes to the design.

In the case of the location information for a stock item, perhaps a better solution would
be to add a location property to the StockItem. We’ve seen properties before. We
used properties to manage the name, address, and telephone number attributes of the
Contact class.

class StockItem(object):

 @property

 def location(self):

 result = getattr(self, '_location', None)

 return result

 @location.setter

 def location(self, location):

 self._location = location

 __init__ for Dress now contains location

 Add the location value
to the __init__ of the

parent object

 Get method for the location property
 Get the attribute, or return None if

location has not been set

 Set method for the location property

399Fashion Shop application

The code above shows how the location property can be added to a StockItem. The
first method gets the location property; the second method sets it. The first method is
interesting because it uses a Python function that we haven’t seen before.

result = getattr(self, '_location', None)

The getattr() function is provided with three arguments. The first is a reference to an
object. In this case, the reference is self, because we want to get the argument out of the
object that is running the method that’s reading the property. The second argument to
the call of getattr() is a string containing the name of the attribute for which we want to
get the value. In this case, we want to get the value of the _location attribute. The third
argument is a value to be returned if the attribute is not present in the object. This would
be the case if the location attribute had not been set. If we try to get the location of a
StockItem that has no location attribute, the property reading code above will return
the value None. We’ve seen the value None before in Chapter 7 (see “Code Analysis: Func-
tions and Return”). We saw that None is a special value used by Python to indicate that a
variable is not set to a useful value. A program reading the location attribute can test for
this value and behave sensibly if it has not been set.

We use the getattr function to read the _location attribute because the property
must deal with the situation in which the _location attribute has not been defined. If a
program just tries to use the property, it would raise an AttributeError, which will stop
the program.

We have seen two ways you can add location information to an object in the Fashion
Shop. A third way would be to just add the location attribute to a particular object
when we want to store the location of that object.

new_dress = Dress(price=100, color='red', pattern='swirly', size=12)

new_dress.location = 'Front of shop'

The statements above create a new dress instance and then set the location of that
dress object to Front of shop. This will work for any object because a Python pro-
gram can add a new attribute to an object at any time. We can then use a Python func-
tion called hasattr to test whether an object has a location attribute:

400 Chapter 11 Object-based solution design

The hasattr() function takes two arguments. The first argument is a reference to an object,
and the second argument is the name of the attribute you’re looking for. The function returns
True if the attribute is present in the object. The code below shows how this would work. It
only displays the location of a stock item if that item has a location property.

if hasattr(new_dress,'location'):

 print('The dress is located: ', new_dress.location)

else:

 print('The dress does not have location information')

We’ve come up with three ways of adding a location attribute to a StockItem class. The
first way involves creating the location attribute in the __init__ method that’s called
when a StockItem is created. The second involves adding a location property to the
StockItem class. The third is the simplest, just adding a new Location attribute to the class.

Setting a location attribute of a stock item in the __init__ method guarantees that
location information is stored for all objects. Adding a location property to a stock item
manages the setting of the location attribute and provides a sensible behavior if the
location has not been set. The third approach—just adding the location attribute to an
object—is extremely open. It provides a way that location information can be added to any
object at any time.

I find the third approach tempting because it is very easy to write, but if I were creating
a “professional” application (that is, one that I intended to sell), I would not use it. This is
because adding attributes in numerous places in an object can make an application hard
to work with. Another programmer reading the program source code would have to look
through the entire program to discover where the location information is added to a stock
item. If I set everything up in the __init__ method, this provides a single place to look for
attribute setups.

As an analogy, I try to keep all my tools in my toolbox, so that if I need my screwdriver, I can
just go to the toolbox and get it. However, as I do jobs around the house, my tools tend to get
spread all over the place. It takes an effort of will for me to put my tools back in the box when
I’ve finished with them, but it greatly speeds up the next job. You can think of the __init__
method as a “toolbox” in which all the settings are entered into a new object. Using the
__init__ method may mean extra work, particularly if we add attributes to the superclass,
but it makes it much easier for anyone looking at the classes to discover what attributes
they contain.

401Fashion Shop application

Instrumented stock items
In Chapter 6, we saw how to use the IDLE debugger to execute a Python program one state-
ment at a time and observe the sequence in which the statements are performed. Another
way to find out what a program does is to add some instrumentation to the code, which is
quite simple to do. The instrumentation we will add is print statements so that show what
happens when the program runs. I’ve created a special set of Fashion Shop classes that con-
tain print statements at the beginning of all methods inside the class.

class StockItem(object):

 '''

 Stock item for the fashion shop

 '''

 show_instrumentation = True

 def __init__(self, stock_ref, price, color, location):

 if StockItem.show_instrumentation:

 print('**StockItem __init__ called')

 self.stock_ref = stock_ref

 self.__price = price

 self.__stock_level = 0

 self.StockItem_version = 1

 self.color = color

 self.location = location

Above, you can see the __init__ method for the StockItem class in my instrumented
version of the Fashion Shop application. It contains a print statement as the first line of the
method, as do all other methods in the StockItem class and every other class in the program.
All the instrumentation messages begin with the string **, so we can distinguish them from
any prints from the program itself. The instrumentation is printed only if the value of the
StockItem show_instrumentation attribute is True.

We can work with the instrumented classes and find out how they work by using the IDLE
Command Shell. Open IDLE and then use File, Open to open the file EG11-06 Instrumented
Stock Items in the IDLE program editor. If we run this program, it will set up all the classes
for us to experiment with in the command shell. Run the program by selecting Run, Run
Module from the editor. The program will run, create the fashion shop classes, print a
message, and then return the Python prompt.

 Set to False to turn off the instrumentation output

 Instrumentation print statement

MAKE SOMETHING HAPPEN

402 Chapter 11 Object-based solution design

RESTART: C:/Users/Rob/EG11-06 Instrumented Stock Items.py

Instrumented classes ready for use

>>>

We can now issue Python statements that create and work with Fashion Shop classes. Note
that you must have run the example program before trying to create objects. Type in
the following statement:

>>> new_dress = Dress('D001', 100, 'red', 'swirly', 12, 'shop window')

When you press Enter, the Dress is constructed.

>>> new_dress = Dress('D001',100, 'red', 'swirly', 12, 'shop window')

** Dress __init__ called

** StockItem __init__ called

>>>

The instrumentation in the class methods show that the __init__ method in Dress is called,
which then calls the __init__ method in the StockItem. Now, let’s construct some jeans.

>>> new_jeans = Jeans('J1',50, 'blue', 'plain', 30, 30, 'flared', 'shop window')

** Jeans __init__ called

** Pants __init__ called

** StockItem __init__ called

>>>

Constructing jeans is slightly more complicated than dresses. The Jeans class extends the
Pants class, so to make a Jeans instance, we first make some Pants. The __init__ method
in the Pants class then calls the __init__ method in the StockItem class.

403Fashion Shop application

Now, let’s see what happens when we print a pair of jeans:

>>> print(new_jeans)

** Jeans __str__ called

** Pants __str__ called

** StockItem __str__ called

** Jeans get item_name called

** StockItem get price called

** StockItem get stock level called

Stock Reference: J1

Price: 50

Stock level: 0

Color: blue

Location: shop window

Pattern: plain

Length: 30

Waist: 30

Style: flared

>>>

This set of messages shows how the __str__ methods in each of the classes in the hierarchy
are called to build up the message that’s printed. The instrumentation also shows when the
price and stock_level properties in the StockItem class were accessed.

We can see how our check_version methods have been chained together so that an
application can check the version of all the elements that make up an object:

>>> new_dress.check_version()

** Dress check_version called

** StockItem check_version called

>>>

The code above shows how the Dress part of the object is checked first followed by the
StockItem part.

404 Chapter 11 Object-based solution design

Finally, we can investigate how the instrumentation itself works.

>>> StockItem.show_instrumentation = False

>>> print(new_jeans)

Stock Reference: J1

Price: 50

Stock level: 0

Color: blue

Location: shop window

Pattern: plain

Length: 30

Waist: 30

Style: flared

>>>

If the StockItem.show_instrumentation flag is set to False, the instrumentation is turned
off. Code instrumentation is very useful in situations in which it would be very difficult to use
an interactive debugger to step through a program. The problem with code instrumenta-
tion is that you must add the print statements to the methods. If we were concerned about
the performance of our program, we could add additional instrumentation that could give
timing information.

Also, you can use logging to determine what a program is doing. Logging is like instrumenta-
tion, but the details of which methods are called are stored in a file that you can view, which is
very useful if your programs are running on a server in another location.

Implement application behaviors
This is the main menu for the Fashion Shop application.

Mary's Fashion Shop

1: Create new stock item

2: Add stock to existing item

3: Sell stock

4: Stock report

5: Exit

Enter your command:

405Fashion Shop application

406 Chapter 11 Object-based solution design

We have used this style of menu several times. The user enters a number to select the
command he wants to perform. Now, we must create the stock item behaviors for
each item.

Create new stock item
You have created the classes that will represent the items in the shop. Now, you need
to work out how to create the stock item records. In the manual version of the Fashion
Shop application, this was performed by adding a new page to the file that holds all
the stock items and then filling in all the details of the new stock item being created.
The application needs to read in all the details for the new stock item and then create
an object of the required type. The code sample below shows how we can do this.

EG11-07 Creating Stock Items

menu = '''

Create new stock item

1: Dress

2: Pants

3: Hat

4: Blouse

5: Jeans

What kind of item do you want to add: '''

item = read_int_ranged(prompt=menu, min_value=1, max_value=5)

if item == 1:

 print('Creating a Dress')

 stock_ref = read_text('Enter stock reference: ')

 price = read_float_ranged(prompt='Enter price: ',

 min_value=StockItem.min_price,

 max_value=StockItem.max_price)

 color = read_text('Enter color: ')

 location = read_text('Enter location: ')

 pattern = read_text('Enter pattern: ')

 size = read_text('Enter size: ')

 stock_item = Dress(stock_ref=stock_ref,

 price=price,

 color=color,

 location=location,

 Menu string

 Select the item to add

 Adding a dress

 Create the dress instance

407Fashion Shop application

 pattern=pattern,

 size=size)

elif item == 2:

 print('Creating a pair of Pants')

 stock_ref = read_text('Enter stock reference: ')

 price = read_float_ranged(prompt='Enter price: ',

 min_value=StockItem.min_price,

 max_value=StockItem.max_price)

 color = read_text('Enter color: ')

 location = read_text('Enter location: ')

 pattern = read_text('Enter pattern: ')

 length = read_text('Enter length: ')

 waist = read_text('Enter waist: ')

 stock_item = Pants(stock_ref=stock_ref,

 price=price,

 color=color,

 location=location,

 pattern=pattern,

 length=length,

 waist=waist)

print(stock_item)

This code allows the user to select the stock item she wants to create, reads in the
attributes for that item, creates an instance of that type, and then prints that item.
The code sample above only creates Dress and Pants objects; the sample in the file
EG11-07 Creating Stock Items contains code for all the different types of clothing
objects. You can run this example, select the type of item to create, and the item will
be created and then printed. Note that this code will not be part of any stock item
class; instead, it will be part of the user interface class FashionShopShellApplication,
which we’ll discuss later.

Add stock to an existing item
When items arrive at the shop from the suppliers, the fashion shop owner must add
their details to the stock records. In the paper-based system, the owner would have to
find the page for that particular stock item and then update the records on that page
in her binder. Figure 11-2 shows a handwritten entry indicating that stock has arrived.
The StockItem class contains an attribute called __stock_level. This is a private attri-
bute—indicated by the two underscore characters in the name—which is set to zero
when an instance of a stock item is created. We can add a method to the StockItem
class that will allow this to be updated:

408 Chapter 11 Object-based solution design

EG11-08 Adding to stock levels

class StockItem(object):

 '''

 Stock item for the fashion shop

 '''

 max_stock_add = 10

 def add_stock(self, count):

 '''

 Adds stock for this item.

 count gives the amount of stock to add

 Raises an exception if the amount is invalid

 '''

 if count < 0 or count > StockItem.max_stock_add:

 raise Exception('Invalid add amount')

 self.__stock_level = self.__stock_level + count

The add_stock method manages the __stock_level and adds to it. The method
parameter count provides the number of items to add to the stock level for this item.

Note that I’ve added an attribute called StockItem.max_stock_add to the StockItem
class. The value of this attribute determines the maximum number of items that can
be added in a call to the add_stock method. For example, let’s say the fashion shop
owner is concerned that she might type 50 rather than 5, which would cause her
records to be incorrect. The present value of StockItem.max_stock_add is 10, which
means values above 10 would be rejected.

d = Dress(stock_ref='D01', price=100, color='red', pattern='swirly',

 size=12, location='Shop Window')

d.add_stock(5)

print(d)

These three statements create a new Dress object, add 5 dresses to the stock for
this item, and then print the dress details. The add_stock method is added to the
StockItem class because this means that all the subclasses (Dress, Pants, Hat, Jeans,
and Blouse) now have this method too.

 Maximum number that can be added

 Add items to stock

 Check that the amount to be added is valid

 Raise an exception if invalid

 Update the stock level with
the count

 Create a dress
 Add 5 dresses to stock

 Print the dress

409Fashion Shop application

Sell a stock item
The final behavior that we must implement for our stock item is selling something.
We can add another method to the StockItem class to do this:

EG11-09 Selling stock

class StockItem(object):

 '''

 Stock item for the fashion shop

 '''

 def sell_stock(self, count):

 if count < 1:

 raise Exception('Invalid number of items to sell')

 if count > self.__stock_level:

 raise Exception('Not enough stock to sell')

 self.__stock_level = self.__stock_level - count

This method is called to sell a given number of stock items. The number of items to
sell is given in the parameter count. The method will raise an exception if the value of
count is less than 1. It will also raise an exception if there are not enough items in stock
to sell. The following sequence of statements creates a Dress, adds 5 to the stock for
the dress, sells 1 dress, and then prints the details of the dress.

d = Dress(stock_ref='D001', price=100, color='red', pattern='swirly',

 size=12, location='Shop Window')

d.add_stock(5)

d.sell_stock(1)

print(d)

Objects as components
We have now completed development of the StockItem object. It contains all the
behaviors that we will need for the first version of the Fashion Shop application. The
StockItem object is completely self-contained, and we’ve been able to check that it
works by performing actions on it and viewing the results. In the next chapter, we’ll
look at ways that we can test our objects automatically.

 Create a dress
 Add 5 to stock

 Sell 1 dress
 Print the dress details again

410 Chapter 11 Object-based solution design

An object like StockItem is sometimes called a component, which is a self-contained
part of a system. A car production line is another example of component-based
manufacturing. A car contains several large components, such as the motor, quarter
panels, axles, and transmission, which are created separately and then assembled to
create a car. The car body contains fittings into which the motor is bolted, and then
the motor output is connected to the wheels.

We’ve done something very similar with our StockItem class. You can think of the
StockItem as the “motor” and the Fashion Shop application as the car in this analogy.

PROGRAMMER’S POINT

Self-contained components are a great way to build software
A great way to attack a large software project is to break it down into individual compo-
nents. If we were working as a team of programmers to build the Fashion Shop application,
we could have sat down at the beginning and decided that the StockItem class must hold
a particular set of attributes and provide a particular set of methods. Then, one program-
mer could build the StockItem component while others work on other parts of the system.

Create a FashionShop
component
We now have a fully working and tested StockItem component. In terms of the
owner’s original, paper-based system, we have implemented a single page to put in
the binder. Now we need to decide how to keep track of the substantial number of
StockItem objects that our application will manage. We can create a FashionShop
component to do this. The FashionShop component must be able to do the following:

 ● Create a new fashion shop.

 ● Save the fashion shop stock data to a file.

 ● Load the data from a file.

 ● Store a new stock item.

 ● Find a particular stock item.

 ● Provide a listing of all stock items.

411Create a FashionShop component

We can map each of these onto a method in the FashionShop class:

EG11-10 FashionShop template

class FashionShop:

 def __init__(self):

 pass

 def save(self, filename):

 '''

 Saves the fashion shop item to the given file name

 Exceptions will be raised if the save fails

 '''

 pass

 @staticmethod

 def load(filename):

 '''

 Loads a fashion shop item from the given file name

 Exceptions will be raised if the load fails

 '''

 return None

 def store_new_stock_item(self, item):

 '''

 Create a new fashion shop item

 The item is indexed on the stock_ref attribute

 Raises an exception if the item is already

 stored in the fashion shop

 '''

 pass

 def find_stock_item (self, stock_ref):

 '''

 Gets an item from the stock

 Returns None if there is no item for

 this stock reference

 '''

 return None

 def __str__(self):

 return ''

412 Chapter 11 Object-based solution design

You can think of this class as a template for the development of the finished object.
We could give this class to a Python programmer and ask her to “fill in the blanks.”
Each method has a documentation string that describes what the method does. Some
of the methods return “placeholder” values that we’ll fill in later. For example, the
find_stock_item method always returns the value None. When the method com-
pletes, it will return the stock item with the matching reference.

Note that once we have determined how the FashionShop component will be
used, the precise way the methods work does not concern a program using the
FashionShop class. You can think of these methods as “buttons” that can be pressed
to make things happen. As long as the right thing happens when the button is
pressed, we don’t care how the class works.

Create a FashionShop object
We will create a version of FashionShop that uses a Python dictionary to store the
stock items. However, a different implementation of the FashionShop class could use
a database instead. We first saw the Python dictionary in Chapter 9. A dictionary lets
you find items in a collection by using a key value to index it. We have the perfect
dictionary key in our application. Each item in the store is identified by a unique stock
reference. We create the dictionary when we create a new FashionShop instance:

class FashionShop:

 def __init__(self):

 self.__stock_dictionary = {}

This is the __init__ method in the FashionShop class. It creates an empty dictionary
attribute called __stock_dictionary, which is part of the FashionShop class. It’s
important that the contents of stock_dictionary are not changed by mistake,
so we’ve marked it as private to the FashionShop class by beginning the attribute
name with two underscore characters. If we want to store other information in the
FashionShop class (perhaps a future version might store a customer list), we would
create those attributes here, too. The Python statement below will create a new
FashionShop instance and set the variable shop to refer to it.

shop = FashionShop()

 Create an empty stock dictionary

413Create a FashionShop component

Save the FashionShop object
We’ll save the data by asking a FashionShop object to save itself. It will do this by using
the Python pickle mechanism. We have used the Python pickle mechanism to store
items in previous programs. The contacts list in the Time Tracker application we wrote
in Chapter 10 was stored using Python pickle.

class FashionShop:

 def save(self, filename):

 '''

 Saves the fashion shop item to the given file name

 Data is stored in binary as a pickled file

 Exceptions will be raised if the save fails

 '''

 with open(filename,'wb') as out_file:

 pickle.dump(self,out_file)

We’ve seen the with construction before in Chapter 8 (see “Use the with construction
to tidy up file access”). The with construction ensures that the file is always closed
correctly after it’s been used. The method uses the self reference supplied to save
to identify the object to be pickled (which is the FashionShop object itself). The two
Python statements below create an empty FashionShop and then store it in a file
called FashionShop.pickle.

shop = FashionShop()

shop.save('FashionShop.pickle')

Load the FashionShop object
The load method in the EG11-10 FashionShop template sample code above has a
@staticmethod decorator. We saw this decorator when we wrote the Time Tracker
application in Chapter 10. It makes the load method part of the FashionShop class,
rather than part of a FashionShop instance.

If you find this confusing, think about the problem we’re using @staticmethod to
solve. Methods like find_stock_item search for a stock item in a FashionShop object.
However, we can’t use the load method from a FashionShop object because at the
time we’re loading the FashionShop, we don’t have a FashionShop object in place.

 Open the file for binary output
 Save the object to the file

414 Chapter 11 Object-based solution design

Making the load method static means that it is part of the FashionShop class, not part
of a FashionShop object.

class FashionShop:

 @staticmethod

 def load(filename):

 '''

 Loads the fashion shop from the given file name

 Data are stored in binary as a pickled file

 Exceptions will be raised if the load fails

 '''

 with open(filename,'rb') as input_file:

 result = pickle.load(input_file)

 return result

The load method returns a reference to the object it has loaded. The statement below
sets the variable loaded_shop to refer to a fashion shop item that’s been loaded from
a file called FashionShop.pickle.

loaded_shop = FashionShop.load('FashionShop.pickle')

Store a new stock item
The FashionShop class acts as a container for all the information concerned with running
the fashion shop. It provides a method that can be used to store a new stock item.

class FashionShop:

 def store_new_stock_item(self, stock_item):

 '''

 Create a new item in the fashion shop

 The item is indexed on the stock_ref value

 Raises an exception if the item already

 exists

 '''

 if stock_item.stock_ref in self.__stock_dictionary:

 raise Exception('Item already present')

 self.__stock_dictionary[stock_item.stock_ref] = stock_item

 Make the load method part of the class

 Open the file for binary input
 Load the FashionShop using pickle

 Return the loaded FashionShop

 Check for an existing item
 Raise an exception of the item is found

 Add the item to
the dictionary

415Create a FashionShop component

The store_new_stock_item method adds a new stock item to the fashion shop. It is
the Python equivalent of adding a new page to the file binder that holds the paper
stock records. Before the item is added to the dictionary, the method checks to see
whether it is already present. That way, if the fashion shop owner mistypes a stock
reference she will not overwrite any existing stock items with new ones.

If the item is already present, the method will raise an exception; otherwise, the stock
item is added to the stock dictionary using the stock reference value as the key. The
following statements create a new dress and then add it to the stock of a fashion shop.

dress = Dress(stock_ref='D001', price=100, color='red', pattern='swirly', size=12,

location='front')

shop = FashionShop()

shop. store_new_stock_item(dress)

Find a stock item
The fashion shop owner searched for her stock items by flicking through the pages in
her binder, looking for the stock reference of the item. The FashionShop class provides
a method that can find a stock item based on its stock reference:

class FashionShop:

 def find_stock_item(self, stock_ref):

 '''

 Gets an item from the stock dictionary

 Returns None if there is no item for

 this key

 '''

 if stock_ref in self.__stock_dictionary:

 return self.__stock_dictionary[stock_ref]

 else:

 return None

The method returns the value None if no stock item matches the stock reference
supplied. It’s up to the code that uses this method to check whether a stock item was
found. The statements below search for a stock item with the reference 'D001'. If this is
found, it is printed out; otherwise, a message is printed.

 Check for the item
 Return the item if found

 Return None if the item is not found

416 Chapter 11 Object-based solution design

item = shop.find_stock_item('D001')

if item == None:

 print('Item not found')

else:

 print(item)

List the stock data
The final behavior we need to implement is listing the stock data. This method should
provide a string that describes the items in stock. Since each stock item class already
has an __str__ method that provides a string description of that item, we just need to
get the string descriptions of all the items in stock and join them into a single string.
We did this before in Chapter 10, when we created a string that contained all the ses-
sion information for a contact.

class FashionShop:

 def __str__(self):

 stock = map(str, self.__stock_dictionary.values())

 stock_list = '\n'.join(stock)

 template = '''Items in Stock

{0}

'''

 return template.format(stock_list)

This code uses the map and join functions. If you’re not sure how they are used, look
again at the section “Session Tracking in Time Tracker” in Chapter 10 for details of how
the string is built. The statements below create a new dress and add it to a Fashion-
Shop object. They then print the contents of the shop. I’ve included the output so you
can see what is produced.

 Get all the stock items into an iterator

 Join the stock items to form a single string
 Template for the string to return

 Build the string to return

417Create a FashionShop component

dress = Dress(stock_ref='D001', price=100, color='red', pattern='swirly', size=12,

location='front')

shop = FashionShop()

shop.store_new_stock_item(dress)

print(shop)

Items in Stock

Stock Reference: D001

Type: Dress

Location: front

Price: 100

Stock level: 0

Color: red

Pattern: swirly

Size: 12

The example program EG11-11 FashionShop class contains the above sample code.
You can use this to explore how the fashion items are stored. The StockItem and
FashionShop classes provide instrumentation that you can turn on to view how the
program works. See the “Make Something Happen - Instrumented stock items” sec-
tion earlier in this chapter to refresh your understanding of instrumentation.

The FashionShop class is much more than a fashion shop storage manager. You can
use it in any application where you want to store items managed by a key. If we’re
asked to create a program to implement a bank, manage a doll collection, or track
entries in a competition, we can use exactly the same code.

Create a user interface component
The final component of our Fashion Shop application is the user interface. This is the
onscreen part with which the user will interact. Because we’re using object-oriented
design, we’ll create a class called FashionShopShellApplication that will implement
the user interface. This class just provides two behaviors:

 ● Initialize the application by loading a FashionShop object from a file (or creating a
new FashionShop if this is the first time the program has been run).

 ● Display the menu for the user.

This class will create a text-based user interface using the command shell. Later, we’ll
create a graphical user interface.

418 Chapter 11 Object-based solution design

Initialize the user interface class
The __init__ method for the FashionShopShellApplication class starts by attempt-
ing to load the specified fashion shop file into a FashionShop object. If the load fails,
the __init__ method creates an empty FashionShop instance and tells the user that
an empty shop has been set up. The __init__ method sets the value of an attribute
called __shop which refers to the FashionShop object that is being used.

class FashionShopShellApplication:

 def __init__(self, filename):

 '''

 Manages the fashion shop data

 Displays a message if the load fails and creates a new shop

 '''

 FashionShopShellApplication.__filename = filename

 try:

 self.__shop = FashionShop.load(filename)

 except:

 print('Fashion shop not loaded.')

 print('Creating an empty fashion shop')

 self.__shop = FashionShop()

The __shop attribute refers to the FashionShop instance with which the program is
working. It will be used by all the other methods in the FashionShopShellApplication
class. The statement below creates a new FashionShopShellApplication instance,
which is using FashionShop data held in a file called fashionshop.pickle.

ui = FashionShopShellApplication('fashionshop.pickle')

Implement the user menu
The other method in the FashionShopShellApplication class repeatedly displays a
menu of commands and lets the user choose what to do. This method will continue
looping until the user decides to exit the program.

 Store the file name for use

 Attempt to load a
FashionShop object

 Tell the user the load failed

 Create an empty FashionShop object

419Create a FashionShop component

class FashionShopShellApplication:

 def main_menu(self):

 prompt = '''Mary's Fashion Shop

1: Create new stock item

2: Add stock to existing item

3: Sell stock

4: Stock report

5: Exit

Enter your command: '''

 while(True):

 command = read_int_ranged(prompt, 1, 5)

 if command == 1:

 self.create_new_stock_item()

 elif command == 2:

 self.add_stock()

 elif command == 3:

 self.sell_stock()

 elif command == 4:

 self.do_report()

 elif command == 5:

 self.__shop.save(FashionShopShellApplication.__filename)

 print('Shop data saved')

 break

This code should be familiar because it’s the same format we’ve used for previous
applications. The number the user enters is used to select a method that will perform
that function. The two statements below show how a user interface is created and
then the main menu displayed.

ui = FashionShopShellApplication('dressshop1.pickle')

ui.main_menu()

 Repeatedly read commands
 Get the command number

 Command 1 creates a new stock item

 Command 2 adds stock to an existing item
 Command 3 sells stock

 Command 4 provides a stock report

 Command 5 saves and exists

 Save the stock details

420 Chapter 11 Object-based solution design

Implement the user interface behaviors
The methods called by the main_menu method are all members of the
FashionShopShellApplication class. Each user interface method sends commands
to the FashionShop instance to which the user interface is connected. As an example,
consider the sell_stock method, which finds the item being sold and then updates
the stock level for that item.

class FashionShopShellApplication:

 def sell_stock(self):

 '''

 Sells stock. Searches for the item and then reads the

 number of items being sold.

 Will not allow more items to be sold than are in stock

 '''

 print('Sell item')

 item_stock_ref = read_text('Enter the stock reference: ')

 item = self.__shop.find_stock_item(item_stock_ref)

 if item == None:

 print('This item was not found')

 return

 print('Selling')

 print(item)

 if item.stock_level == 0:

 print('There are none in stock')

 return

 number_sold = read_int_ranged('How many sold (0 to abandon): ',

 0,

 item.stock_level)

 if number_sold == 0:

 print('Sell item abandoned')

 return

 item.sell_stock(number_sold)

 print('Items sold')

 Get the stock
reference

 Find the item we
are selling

 If the item wasn’t found, display a message

 Show the item that is being sold

 Abandon the sale if there are none to sell

 Abandon the sale if the user entered 0

 Update the item with the number sold

421Design with classes

This method takes the user through the sales process. The user is first asked to identify
the stock item to be sold. The method then asks for the number of items that have
been sold and calls the sell_stock method on that item to update the stock levels. All
the other methods are implemented in the same way.

PROGRAMMER’S POINT

You will spend a lot of your time writing code to deal with failure
The sell_stock method does the following:

• It handles invalid stock references entered by the user.

• It ensures that it’s not possible to sell more items than exist in stock.

• It provides a way that the user can abandon the sale if they find that they have selected
the wrong item.

Software developers talk about the “happy path” through a program, which is the path
followed when everything works and nobody makes any mistakes. The “happy path” code
is often a very small fraction of the final application, and has to deal with all the ways that
actions can go wrong. The happy path is not a problem as such, but it is something to
remember when you try to decide how much work will be involved in creating a system.

The sample program EG11-12 Complete Fashion Shop contains a completely work-
ing and useable fashion shop manager that you can explore. You could actually use
this to manage an actual fashion shop. You could also use it as the basis of any pro-
gram you write that will allow the user to manage a set of related data items.

Design with classes
Figure 11-4 shows the classes in the finished Fashion Shop application. It is not quite
complete. It shows only the Dress and Pants subclasses of StockItem and no longer
shows that the object class is the superclass of all the other classes. However, it does
show how the objects are related. The diagram shows that the StockItem class is the
superclass of Dress and Pants, and it also shows the associations between the two
other classes in the solution.

422 Chapter 11 Object-based solution design

FashionShopShellApplication

__shop

FashionShop

__stock_dictionary

StockItem

stock_ref
item_name
color
price
stock_level

Dress

pattern
size

Pants

length
pattern
waist

Inheritance

1 1 1 1..*

Figure 11-4 Complete FashionShop class diagram

Figure 11-5 lets us examine in detail how an association is described on this diagram.
The line shows that FashionShop and StockItem are associated in some way. The
numbers give the multiplicity of the association. The multiplicity values give the number
of items on each side of an association. The number 1 next to the FashionShop class
means that there is one FashionShop object on the left-hand side of the association. The
string 1..* means that there are “one to many” StockItem objects on the right-hand side
of the association. This is how, in software design, we express that a fashion shop can
contain many items of stock. The FashionShopShellApplication is only associated with
a single FashionShop, so multiplicity values on each side of that association are 1.

FashionShop

__stock_dictionary

StockItem

stock_ref
item_name
color
price
stock_level

1 1..*

Figure 11-5 Associations between objects

Using class diagrams like this is a good way to start designing a system. The diagrams
are also a good way to describe to other programmers how the elements of your
program fit together.

Python sets
Python lets us create variables that can hold sets of data. A set is a collection of values.
However, unlike a list, each value in a set is unique. Sets are extremely powerful and
allow us do things that our fashion shop owner would really like. However, first we
must find out how they work.

Investigating sets
We can experiment with sets by using the IDLE Command Shell. Open it, type the statement
below, and press Enter.

>>> set1=set()

This statement creates an empty set. Enter the statement below and press Enter to view the
contents of the set.

>>> set1

set()

We can add things to the set in a similar way as we append things to a list. A set object pro-
vides an add method.

>>> set1.add(1)

This statement adds the integer value 1 to the list. If we now view the set, we can see that it
contains the value 1.

>>> set1

{1}

Currently, you probably can’t see much difference between a set and a list. However, sets can
hold only one copy of each possible value. We can prove this by trying to add the value 1 to
the list again.

>>> set1.add(1)

If the variable set1 was referring to a list, this would have added a second value of 1 to the
list. However, if we view the contents of set1 we’ll find that it has not changed:

>>> set1

{1}

MAKE SOMETHING HAPPEN

423Python sets

If we add a different value, it is added to the set. Enter the following two statements to add
the value 2 to the set and then view the contents of the set.

>>> set1.add(2)

>>> set1

{1, 2}

A quick way to make a set is to use curly braces to enclose a set of values to be added. Let’s
create another set with the original name of set2.

>>> set2={2,3,4,5}

>>> set2

{2, 3, 4, 5}

A set has methods that can be used to work with other sets. Let’s look at a few, starting with
the difference method.

>>> set1.difference(set2)

{1}

In the statement above, the difference method is running on the object referred to by
set1. It returns a set that contains all the items in set1 but not in set2. We can run the same
method on set2 to find all the items in set2 that are not in set1.

>>> set2.difference(set1)

{3, 4, 5}

The union method returns a set that contains all the elements of both sets:

>>> set1.union(set2)

{1, 2, 3, 4, 5}

The intersection method returns a set that contains all the elements the sets have
in common:

>>> set1.intersection(set2)

{2}

424 Chapter 11 Object-based solution design

The only element in set1 and set2 is the element 2.

We can also use methods on sets to compare their contents. The isdisjoint method returns
True if the two sets have no elements in common:

>>> set1.isdisjoint(set2)

False

The two sets are not disjoint because they both contain the value 2.

The issubset method returns True if one set is a subset of the other (meaning one set is
contained entirely within another set). Let’s create a new set to experiment with this.

>>> set3={2,3}

>>> set3.issubset(set2)

True

This is True because set2 (which contains {2,3,4,5}) contains all the elements in set3.

The issuperset method returns True if one set is a superset of the other:

>>> set3.issuperset(set2)

False

This is False because not all the elements in set3 are in set2.

Now that we know something about sets and their methods, you might be wondering
when they are useful.

Sets can be used to remove duplicate items from a collection:

set('hello world')

{'o', 'l', ' ', 'h', 'r', 'w', 'd', 'e'}

A set created from the string hello world contains all the unique letters in the string.
You may notice that the order of the letters in the set is not alphabetic. Python does
not store the elements of a set in any particular order. If you want to sort a set (or any
other collection), you can use the Python function called sorted.

425Python sets

426 Chapter 11 Object-based solution design

sorted('Rob Miles')

[' ', 'M', 'R', 'b', 'e', 'i', 'l', 'o', 's']

sorted(set('hello world'))

[' ', 'd', 'e', 'h', 'l', 'o', 'r', 'w']

We can also use sets to manage the inventory of a player in a video game:

pocket = {'axe', 'apple', 'herbs', 'flashlight'}

This player is carrying a nice selection of items in their pocket. It is now easy to check
for particular combinations of items in this set:

apple_potion = {'apple','herbs'}

if apple_potion.issubset(pocket):

 print('You have the ingredients for the apple potion')

The apple potion is made from apple and herbs. The above statement checks to see
whether the player can make this potion. The minus operator can be used between set
operands to subtract the contents of one set from another. The following two state-
ments remove the ingredients from the pocket and then add the apple potion into the
pocket of the player.

pocket = pocket - apple_potion

pocket.add('apple potion')

The statements above work because the subtract (-) operator can be applied between
two sets. In the above statement, the elements in the apple_potion set (the apple and
the herbs elements) will be removed from the pocket set.

Sets and tags
Sets are one of those things you don’t use very often, but when you do, they’re very
useful. The fashion shop owner has been in touch and has an idea for her program
that she wants you to implement. She’s noticed that often her customers are pursuing
a specific “look” or “style” when buying their clothes. They might be buying items for
work, outdoors, or a formal occasion. She wants to add “tags” to her stock items so that
she can easily search for the “formal” or “outdoors” (or even “formal outdoors”) clothing
items that she has in stock. Then she can direct customers to appropriate items.

427Python sets

Many items of data are tagged in this way. My blog posts are tagged “Python,” C#,”
“gadgets,” and so on. I can tag my photographs as “sunset,” “landscape,” or “people.”
Sets are a very good way to represent tags on an item.

Create a set from a string of text
We can give each StockItem in our fashion shop a tags attribute that is a set of tag
values for that attribute. The tags will be entered when the stock item is created. We
can enter them as a comma-separated list that we can then convert into a set of tags.
In other words, the user would enter the following:

Enter tags (separated by commas): outdoor,spring,informal,short

The part of the program that reads in a StockItem would then convert the comma-
separated list into a set of tags for this stock item. Let’s consider how we would do this.
We can use one of our text reading methods to read in the tag list.

tag_string = read_text('Enter tags (separated by commas): ')

This statement reads in the tags and stores them in a variable called tag_string. The
first thing we need to do is make sure that all the letters in this string are lowercase. As
far as Python sets are concerned, the tags “Outdoor” and “outdoor” are different, and
we want these to match up when we search for them.

tag_string = str.lower(tag_string)

This statement uses the lower() method provided by the str type to convert
tag_string into lowercase. We’ve used string methods like this before when we
converted names to uppercase in Chapter 5.

We can create a set from a list of items, so next we need to convert the string of tags
into a list. You can think of this process as the reverse of the join function that we
used to create long strings of output from lists of stock item details. The split method
provided by the str type will do this for us.

tag_list = str.split(tag_string, sep=',')

428 Chapter 11 Object-based solution design

The split method takes a string and converts it into a list of items. We can use the key-
word argument sep to specify the separator between each item that we want to split.
In this case, we want to separate items using the comma character, so we give that as
the value of sep.

Once this statement has completed, the variable tag_list contains a list of the tags
that the user has entered. You might think that we could just use this list to create a
set, but this might give us problems. Consider this input from our fashion shop owner:

Enter tags (separated by commas): outdoor, spring, informal, short

It looks very similar to the original list above, but there are some important differences
between this list of tags and the previous one. This time, the owner has entered some
spaces in front of the tag names. This is a problem for the program because the tags
spring (without a space before the word) and spring (with a space before the word)
would be regarded as different elements in a set. This would result in some items not
appearing in searches, which would result in complaints from the fashion shop owner.
And pointing out that she had typed in the tags wrong would not improve the situa-
tion. We need a way to “tidy up” the tag names before we create the set.

In Chapter 8, we learned about a string method called strip, which we used to strip
non-printable characters from the start and end of a string. We want to apply the
strip function to every string in the list of tags.

This turns out to be very easy. We first saw the map function in Chapter 10, when we
used it to apply the str function to a list of items. We can use map to apply the strip
function from the str type to all the items in the tag list:

tag_list = map(str.strip,tag_list)

If this is difficult to understand, consider what we’re trying to do here. We want to strip
every string in the list of any non-printing characters (for example, space characters).
We have a method that we know can do this. The job of the map function is to take a
function and “map” it onto an entire collection of items.

Now that we have our tag list, we can use it to create a set:

tags = set(tag_list)

The best way to provide this behavior is as a method. The method takes a string and
then returns the set that’s created from that string.

429Python sets

@staticmethod

def get_tag_set_from_text(tag_text):

 '''

 Converts a comma-separated list into a set

 of individual items

 Converts the text to lowercase and trims each

 word

 '''

 # Convert the string to lowercase

 tag_text = str.lower(tag_text)

 # Make a list of all the words in the string

 # separated by the comma character

 tag_list = str.split(tag_text, sep=',')

 # Remove any spaces at the start or

 # end of each string in the list

 tag_list = map(str.strip,tag_list)

 # return a set created from the list

 return set(tag_list)

This is the method I’ve added to the Fashion Shop application. It is a static method,
since the behavior that it provides is not tied to any particular instance of a class.

Filter on tags
Now that we’ve added tags to the stock items, next we need a way to select the items
in the stock list that contain the tags we’re searching for. In other words, the owner of
the fashion shop will type in a list of tags she wants to search for, and the program will
display items it finds that match these tags.

Enter the tags to look for (separated by commas): outdoor,spring

Stock Reference: BL343

Type: Blouse

Location: blouse rail

Price: 100

Stock level: 0

Color: pink

Tags: {'spring', 'friendly', 'city', 'outdoor'}

Size: 14

Style: plain

Pattern: check

430 Chapter 11 Object-based solution design

The output above shows how this will work. The owner is searching for outdoor wear
for spring, and the program has found a blouse that matches these criteria. We can
use the method get_tag_set_from_text to create the search set, and now we need
to work through all the stock items and find those that “match.”

In this case, the word match means “is the search set a subset” of the tags on this
item. In the example above, the search set is { outdoor, spring } and the tags on
the matched item are { spring, friendly, city, outdoor }. The item has been
selected because its tags contain all the tags in the search set.

We can use the method issubset to test whether the search tags are a subset of the
tags on the item.

def match_tags(item):

 '''

 Returns True if the tags in the item

 contain the search tags

 '''

 return search_tags.issubset(item.tags)

The function match_tags will return True if the search tags are a subset of the tags
on the item passed as a parameter to the method. I’ve written this function because
I want to use it in a Python function we haven’t seen before. The function is called
filter. It works in the same way as the map function. The map function returns the
result of applying a function to all the elements in a collection. This is how we applied
trim to all the strings in the list of tag strings the user had entered.

The filter function returns the result of testing all the elements in a collection with a
filter. If the function returns True, the resulting collection contains that item.

filtered_list = filter(match_tags, stock_list)

The statement above sets the variable filtered_list to refer to a collection of stock
items that have been filtered by the match_tags method. If we want to change the
filter behavior (perhaps to return items that don’t match the given tags), we just need
to create a different filter function and use that instead.

431Python sets

def find_matching_with_tags(self, search_tags):

 '''

 Returns the stock items that contain

 the search_tags as a subset of their tags

 '''

 def match_tags(item):

 '''

 Returns True if the tags in the item

 contain the search tags

 '''

 return search_tags.issubset(item.tags)

 return filter(match_tags, self.__stock_dictionary.values())

This is the find_matching_with_tags method from the FashionShop class. It returns
a list of stock items that contain the search tags supplied as a parameter. It uses a
Python feature that we haven’t seen before. The match_tags function is declared
inside the find_matching_with_tags method. Python allows functions to be declared
inside program code. We’ll discuss this in more detail in the next chapter, when we
discover how to create libraries of Python code.

The sample code file EG11-13 Fashion Shop with Tags contains a version of the
Fashion Shop application that allows you to tag stock items and search for them.

Sets versus class hierarchies
One of the wonderful things about writing programs for people is finding out what
they do with them. You’ve delivered your “tagged” version of the Fashion Shop appli-
cation to the owner, and she’s very pleased with it. She starts using the new version of
the program. After a while, she gives you a call to discuss some changes she’d like to
make to the code. This is a worrying thing to hear from a customer, so you go along to
find out what’s wrong.

It turns out that nothing is broken in the code, but the fashion shop owner would like
to make some big changes to the way the application works. She really likes using
tags to identify elements in her stock and is finding it a pain to have to enter things
as pants, dresses, jeans, and so on. Instead, she wants to index all stock using tags.
Dresses would have the dress tag, pants could have the pants tag, and so on. In other
words, she wants to change from this:

432 Chapter 11 Object-based solution design

What kind of item do you want to add: 1

Creating a Dress

Enter stock reference: D001

Enter price: 120

Enter color: red

Enter location: shop window

Enter tags (separated by commas): evening,long

Enter pattern: swirly

Enter size: 12

To this:

Enter stock reference: D001

Enter price: 120

Enter tags (separated by commas): dress,color:red,location:shop

window,pattern:swirly,size:12,evening,long

She finds it very easy to search for the different tags, and the tags themselves remind
her of the notes she used to write on the stock pages. If she starts to stock a new kind
of item, or if she decides on a new way of describing items she has, then she just has to
invent a new tag. The only change that she really needs to make this work is for us to
add the ability to edit the tag information on an item. That way, she can add new tags.
We tell her of the dangers of working this way: If she mistypes a tag, it will mean that
searches for that item will fail. But she doesn’t care about that. She just loves tags.

The sample code file EG11-14 Tag only fashion shop holds a version of the Fashion
Shop application that works entirely with tags.

Advantages of using sets and tags
Using sets to implement tags like this brings a few advantages:

 ● The client is now completely in control of how she organizes her stock.

 ● She can just continue adding tags and searching for them. She might find this a bit
unwieldy if the number of tags gets very large, but that is something she seems
happy to live with.

 ● From a programming point of view, this greatly simplifies the program, in that
there is now no need for a class hierarchy. Everything in the system can be a
stock item.

433Python sets

Advantages of using classes
The major advantage of using classes to manage data like this is that the application
can enforce strict rules on the objects created. If we use classes, we can ensure that
every dress in the system has a size, pattern, and color attribute, because all this infor-
mation is required to create a dress. If the shop owner uses tags to describe a dress,
she runs the risk of missing data from stock items. In other words, if we use tags the
shop owner is under no obligation to specify the color of a dress.

Classes also allow polymorphism. We can make a dress object behave differently from
pants when it performs a particular action. We used this when we wrote the __str__
methods to provide a string description of the contents of a stock item. Each stock
item could give a description of its attributes that matched that type of item. If we just
tag all the items, we don’t have an easy way to make different kinds of items behave in
different ways.

PROGRAMMER’S POINT

What’s important to the programmer might not be important
to the customer
This is one of the hardest lessons that you must learn when writing software for a customer.
Sometimes things that you think are great, important, or useful are of no interest to the
customer. And just as often, programmers don’t recognize things that are important to a
customer. In the case of the Fashion Shop application, we made the assumption that it was
very important to store all details of all stock items all the time. A class hierarchy is a great
way to achieve this, and so we used that mechanism.

However, it turns out that as long as the system rigorously manages the stock reference,
price, and the number of items in stock, the customer doesn’t really care about the other
information in her stock items. She finds it much more useful to be able to add and modify
tags and organize her stock as she goes along.

Finding out what’s important to the customer is a crucial part of creating a project with a
happy ending.

434 Chapter 11 Object-based solution design

Design decisions
A good way to explore these issues is by looking at some scenarios and deciding whether
tags or a class hierarchy makes sense.

Question: We’ve been asked to create a set of diverse kinds of bank accounts by a local bank.
The bank offers savings, credit, and checking accounts. Should we use a class hierarchy for this?

Answer: A class hierarchy would work best in this situation. We need control over all the
attributes in the items we’re storing. Some elements of each account will be common (for
example, the name and address of the account holder), but other items will be different
for each account. For example, a credit account will need a credit limit attribute. A super-
class called account that holds the common items, and subclasses that add their own
attributes would make sense.

Furthermore, a class hierarchy would provide polymorphism. The process of withdraw-
ing funds will be different for each kind of account, so each subclass can provide its own
method for performing this function.

Question: We’ve been asked to create an artwork tracking system for a local gallery. The
gallery holds pictures, sculptures, and manuscripts. Should we use a hierarchy for this?

Answer: It might not be a good idea to use a hierarchy in this situation. Each item in the
gallery will have different properties, and the gallery may well want to evolve and change the
way that they categorize their stock. Sets and tags would work well in this situation. In fact, we
could probably suggest that they use the Fashion Shop application directly, since it’s flexible
enough to allow the gallery owner to store any kind of information about exhibits.

CODE ANALYSIS

What you have learned
In this chapter, you created another useful application. The application was built from
components and uses inheritance to allow it to manage a large number of related
items, each of which has slightly different characteristics. Inheritance lets program-
mers create subclasses (children) based on superclasses (parents). The subclass inherits
all the attributes of the superclass and can use overriding to replace behaviors in the
superclass with behaviors more appropriate to the subclass. As an example, the Fash-
ion Shop application contains a StockItem class, which is the superclass of the Dress
and Pants classes. The StockItem contains all the information common to any item
of stock, and the Dress and Pants subclasses hold information specific to that type of
clothing. Each of the subclasses overrides the __str__ behavior of the superclass, so
that a Dress can generate a correct string description of itself.

435What you have learned

You discovered how breaking down systems into components makes it easy to
develop and test each component separately. A component can provide a set of
method attributes that make the component do the job it was created to perform.
As an example, the StockItem class contains a method called add_stock, which can
be used to increase the stock levels. Other parts of a system can regard a particular
component purely in terms of the methods it provides, without concern for how the
methods work. The FashionShop class in the example version of the Fashion Shop
application uses a dictionary to store the stock items, but this could be replaced by a
FashionShop class that uses a database without any need to change the other classes
in the system. Components can be developed and tested individually once their
method attributes have been established.

You were introduced to sets. A set is a collection of unique values that can be man-
aged by Python, which provides functions that can manage the contents of a set and
also determine relationships between sets. You found that you can use sets to allow
objects to be “tagged” with the contents of a set. We can then search and filter collec-
tions of objects based on their tags. We used this to provide a simpler Fashion Shop
application, which replaced various types of objects with tags that hold information
about different stock items.

Finally, you discovered (or at least were told) that it’s very important for a program-
mer to make sure they fully understand what’s important to a user of the system
they’re creating.

Here are some points to ponder about what we have learned.

Do I have to use a class hierarchy if I want to store many related items?

No. I tend to use class hierarchies when I really want each of the related items to use
polymorphism to behave in a unique way. We’ll see this ability used to very good
effect when we create a video game in Chapter 16. Each of the elements of our video
game will have an “update” method, but the action of the update method will vary for
diverse types of elements. The update method for a player will read the game controls
and move the player around the screen, the update method for an alien will make the
alien chase the player, and so on.

What turns an object into a software component?

We decided that creating software components is a good thing. A software compo-
nent is cohesive. It can perform all its functions without needing to make use of other
objects. If you consider the StockItem class from the point of view of cohesion, you’ll
find that every action that I ask the StockItem to perform is performed by that object
alone, without reference to any other object. A system with poor cohesion would have
the methods create_stock_item and sell_stock located in different classes.

436 Chapter 11 Object-based solution design

A good test of how cohesive an object is would be to consider the difficultly of
swapping that component for another that worked in the same way. In the case of
StockItem, I could change the StockItem class for a different version that worked in
the same way, and I would not have to change any other classes.

It’s important that the way you interact with a component is very well defined. The
StockItem class provides a set of methods that can store and manage data about a
stock item. It doesn’t provide any other methods for any other purpose.

The most important thing about component-based design is that you design the
components first. You decide what data attributes each component will have. You
then decide on the method attributes and how the individual components are related.
Then you can work on these components individually and then integrate them to
create the finished solution.

Do I have to use object-oriented design to make my programs?

No. A great thing about Python is that we can achieve polymorphism (making objects
behave in a manner appropriate to them) just by adding a method with a specific
name to each object. When we call that method on the object, it will provide its own,
characteristic action.

There’s no need to create a framework of classes and design their attributes before
we write any code. We can just dive in and start writing the program. This is great fun,
and sometimes it even results in a working solution. However, programs written in this
way are extremely hard to fix or upgrade, because a programmer will have a hard time
figuring out how the program works before they can make any changes to it.

You might think that you write programs for computers, and I suppose that this is
true, in that the program will be obeyed by a computer. But I try to write programs for
other people, specifically those who will come after me and have to work on programs
that I’ve created. My priority when writing code is to try to make it as easy to under-
stand as possible. This can sometimes mean that my code runs a bit slower than it
might if I focused on speed alone, but modern computers are so powerful that this is
rarely an issue.

Why is the relationship between a subclass and a superclass so confusing?

If it isn’t confusing for you, then move on to the next question. However, I have always
found this confusing for the simple reason that the superclass is the one with the
fewest abilities. Because the subclass is an extension of the superclass, it will always be
able to do at least as much as the superclass. The reason the superclass is called super
is that it is at the top of the tree of classes, and the class from which other things are
descended. If you’re having difficulty remembering how this works, remember that if
a superhero was at the top of a class diagram containing people, it would mean that
all the people in the class diagram would have super powers.

437What you have learned

What exactly happens when a method in a class is overridden?

Overriding a method means providing a behavior that is more appropriate than the
behavior in the superclass. When Python calls a method attribute on a class, it first
looks in that class for the method. If it doesn’t find the method in the class, it looks for
the method in the superclass of that object. It repeats this process until it either finds
the method or runs out of objects in the hierarchy. Allowing methods to be overrid-
den does slightly slow down a Python program because a method call might involve
this searching process, but the Python system is very good at searching very quickly.

What things in my class should be made static?

Static items are always present. We don’t need to create any objects to use static items
because they are part of classes, rather than objects. You use static data attributes to
store values for class-wide use. For example, the maximum price of a stock item can be
made a static value. A program might want to find the maximum price of a stock item
without having a stock item to ask, and the maximum price should be stored only for
the class, not for every stock item.

You use static method attributes to create a method that can be used without needing
an instance of the class. The load method is a very good example of a static method
because it can’t be part of an object because the object hasn’t been loaded yet.

When do I use abstraction?

You use abstraction when you’re thinking about the objects in the system you’re
creating. For example, abstraction would help you avoid getting distracted by the
various kinds of customers with which your sales management system might need to
work. Abstraction says that you regard them all as “customers,” decide what custom-
ers need to do, and then create more concrete (less abstract) classes as you develop
your design.

12
Python

applications

440 Chapter 12 Python applications

Advanced functions
In this section, we’ll build on our understanding of how Python functions work and
discover some really useful and powerful features of the language.

References to functions
We’ve already seen references to functions in our programs. In Chapter 7, we discov-
ered that we could create variables that refer to functions. In Chapter 10, we saw how
the Python map function is given a reference to a function and then applies (or maps)
that function to all items in a collection. In Chapter 11, we saw how the filter function
could use a supplied function reference to select items from a list. Now, we’ll explore
function references in more detail. Let’s start by considering the following code:

EG12-01 Simple Function References

def func_1():

 print('hello from function 1')

def func_2():

 print('hello from function 2')

x = func_1

x()

x = func_2

x()

This code contains two functions called func_1 and func_2. The variable x is made to
refer to each function in turn and is called after it has been assigned. In the program
above, when the variable x is used as the basis of a function call, a call is made to the
function to which variable x refers. As a result, the program will print the following:

hello from function 1

hello from function 2

You can think of a variable that refers to a function as a direct replacement for the
function name. If we use the reference incorrectly, we’ll see the same error that’s pro-
duced when we call the function incorrectly.

 Create a function called func_1

 Create a function called func_2

 Set the variable x to refer to func_1
 Call the function to which x refers

 Set the variable x to refer to func_2
 Call the function to which x refers

441Advanced functions

EG12-02 Invalid Function References

def func_1():

 print('hello from function 1')

x = func_1

x(99)

The above program will generate an error, because the call to reference x is given an
argument (99) that the function to which it refers cannot accept because func_1 was
defined as having no arguments.

Traceback (most recent call last):

 File "C:/Users/Rob/EG12-02 Invalid Function References.py", line 7, in <module>

 x(99)

TypeError: func_1() takes 0 positional arguments but 1 was given

Above, you see the error that’s produced, but the error output doesn’t mention the
variable x. Although the function call was made via the variable x (which contains the
reference to the function), the error report simply states that the function to which x
refers —in this case func_1—was not called correctly.

Use function references in the BTCInput module
We can see a good example of the power of function references when we consider
the number input functions in the BTCInput module. This module contains functions
based on ones we developed in Chapter 7 to help our programs read input from the
user. It contains a set of functions for reading numbers, including a function that can
read an integer.

def read_int(prompt):

 while True:

 try:

 number_text = read_text(prompt)

 result = int(number_text) # read the input

 # if we get here, no exception was raised

 # break out of the loop

 break

 except ValueError:

 # if we get here, the user entered an invalid number

 Function func_1 defined with no parameters

 Reference called with an argument

 Function supplied with a string to use as a prompt

 Read in the text of the number the user enters
 Use the int function to

convert the text into an integer

442 Chapter 12 Python applications

 print('Please enter a number')

 # return the result

 return result

This code shows the read_int function in the BTCInput module. Programs can use it
to read an integer from the user. It deals with any exceptions that would normally be
raised if the user enters something like “twelve” rather than “12”. The read_int func-
tion can be used in a program as follows:

age = BTCInput.read_int('Enter your age: ')

The statement above calls read_int, which reads an integer value and assigns the result to
a variable called age. The BTCInput library also contains a function called read_float that
reads-in a floating-point number. The read_float function is the same code as read_int
except for one difference. The read_float function creates a floating-point number from
the text the user enters rather than creating an integer. We can remove the need for dupli-
cation of the code by creating a generic read_number function that can be used to read
any value that can be converted from a string of text into a numeric value:

def read_number(prompt, number_converter):

 '''

 Displays a prompt and returns a value obtained

 by applying the number_conversion function to the text

 entered by the user.

 If the number_conversion function raises an exception,

 the read is retried.

 Keyboard interrupts (Ctrl+C) are ignored

 '''

 while True:

 try:

 number_text = read_text(prompt)

 result = number_converter (number_text) # read the input

 # if we get here, no exception was raised

 # break out of the loop

 break

 except ValueError:

 # if we get here, the user entered an invalid number

 print('Please enter a number')

 # return the result

 return result

 The function to perform number
conversion is now passed as a parameter

 Use the number_converter parameter to
perform the number conversion

Function references
Function references are complicated. I’d be surprised if you didn’t have some questions.

Question: What is a function reference?

Answer: You can think of a function reference as one piece of a program telling another
piece of the program what to do. People tell each other what to do all the time. When
we’re cooking, my wife will sometimes give me some potatoes and say, “Please peel and
roast these. Other times, she’ll give me the potatoes and say, “Please put these in the
oven and bake them.” I’m getting two inputs:

 ◦ The potatoes

 ◦ Instructions telling me what to do with them

The read_number function is given a prompt string for the user followed by a reference
to the function it will call to convert the string into a numeric value. You can think of a
function reference parameter as a way of telling a function what to do.

CODE ANALYSIS

443Advanced functions

This code looks very similar to the read_int function, but the read_number function
has an extra parameter, called number_converter. This parameter is a reference to the
number conversion function that will be used to take in a string of text and generate
the method’s result.

We can now tell the read_number function the process that converts the user
entered string into a result. We can then create a read_float function, which calls
read_number and provides float as the number converter function that converts
the text into a number.

def read_float(prompt):

 return read_number(prompt=prompt, number_converter=float)

The above code is a version of the read_float method that accepts a prompt string
as a parameter and returns a floating-point result. It calls the read_number function
to do this. Note that the number_converter argument is given as the float function
because float is function we want read_number to use to convert the text input
into a value.

Question: Why is using function references like this a good idea?

Answer: The read_float and read_int functions do almost the same thing. They both
read numbers. The only difference between the two functions is that one function uses
the int method to generate the result from the input string and the other uses the float
method. It’s not good programming practice to have two functions that are identical
except for a single statement. If you find yourself writing code like this, try to work out
how to use a parameter to modify the behavior of a single function to make it do the job
of both. The best way to tell the read_number function what to do is to pass it a refer-
ence to the function you want it to use.

Note that I’m not using a single function because I want to save space in my program
by only having one read_number function in place of two. I’m using one function so
that if I find a mistake in my number reader, or I need to modify it, I need only change
one function.

Question: If I wrote a function that converted Roman numerals into a numeric result, could I
use read_number to read Roman numbers?

Answer: Yes. I once wrote a function that accepted Roman number strings such as “XVI”
and calculated the number they represent (in this case, 16). You might want to try doing
this. The number conversion function you create must accept a string and return a num-
ber. If your function is given as a string that it can’t convert into a number, it must raise
an exception. This is exactly how the int and float functions work. You could call your
function roman_converter. We could then use your function with read_number:

age = read_number(prompt='Enter your age in roman numerals',

number_converter=roman_converter)

The read_number function has a wide range of possible uses. If we write a function
to convert date strings (for example, '12/10/2017') into date values, we could use
read_number to repeatedly ask for dates until the user entered a valid one.

Using a function as a parameter, as we have done with the number_converter function
parameter, is a form of abstraction. Abstraction is a way of “stepping back” from a prob-
lem and coming up with general solutions that we modify to make more specific. We’ve
written a method that repeatedly asks the user a question, uses a function that we’ve
supplied to process the answer, and returns a result only when the process works. We can
use the read_number function to request and process any user input.

444 Chapter 12 Python applications

445Advanced functions

Build lists of function references
We can use function references as we would any other kind of data. We can even
create collections containing function reference values.

EG12-3 Robot Dancer

import time

def forward():

 print('robot moving forward')

 time.sleep(1)

def back():

 print('robot moving back')

 time.sleep(1)

def left():

 print('robot moving left')

 time.sleep(1)

def right():

 print('robot moving right')

 time.sleep(1)

dance_moves = [forward, back, left, right]

print('Dance starting')

for move in dance_moves:

 move()

print('Dance over')

This code could be used to control a dancing robot. The robot has four moves it can
perform, each of which is represented by a function. In the example above, the func-
tions just print a message and pause the program for a second; we can go back and fill
in the actual behaviors later. The dance_moves list contains a list of references to the
robot functions. The for loop at the end of the program works through this list and
calls each function in turn. The output from the program would look like this:

 List of dance move function references

 Work through each dance move
 Call the dance move function

446 Chapter 12 Python applications

Dance starting

robot moving forward

robot moving back

robot moving left

robot moving right

Dance over

We could make the dance longer by adding elements to the list. We could write a pro-
gram that lets the user select each move and build up a dance sequence of their own.

Use lambda expressions
Lambda expressions can be very useful, though some people think they’re quite hard
to understand (perhaps because the name sounds rather mathematical and com-
plicated). However, a lambda expression is a means of creating a piece of functional
behavior that we can use as a value in our programs. That doesn’t sound complicated
at all, does it?

A function takes something, does something with it, and then returns a result. You
can think of a lambda expression as a tiny function that we can write on one line.
Figure 12-1 shows the anatomy of a lambda expression.

arguments
(comma-separated list
of arguments values)

:lambda
(start of the

lambda)

expression
(expression to be

evaluated)

Figure 12-1 Anatomy of a lambda expression

The colon character serves to separate the list of arguments (stuff going in) from the
expression that is evaluated (stuff coming out). As an example, look at the following
Python code:

def increment(x):

 return x+1

Make a lambda expression
The best way to learn how to use lambda expressions is to work with them, so let’s do that.
Open the Python Command Shell in IDLE and enter this statement:

>>> numbers = [1,2,3,4,5,6,7,8]

This statement creates a list called numbers, which contains the numbers 1 to 8. These num-
bers will be the data which our lambda expression will work on. Perhaps we might want to
create a list that contains the numbers 1 to 8 with one added to them. What we need is a way
of creating a new list with the updated values.

We can use the map function to do this. As we know from Chapter 10, map is a built-in Python
function that applies a function to all the elements in a collection and outputs a collection
with the updated values. We used map to convert all the Fashion Shop stock item objects into
strings by using the str function.

We can create a function called increment and use map to apply the increment function to
all the values in the numbers list. The code would look like this (there’s no need to type this
code in):

def increment(x):

 return x+1

new_numbers = map(increment, numbers)

MAKE SOMETHING HAPPEN

447Advanced functions

This code defines a function called increment, which takes in a value (the parameter x)
and returns a result (the value of x + 1). The same thing written as a lambda expres-
sion would look like this:

increment = lambda x : x+1

This expression also defines a function called increment which returns the value of
its parameter, plus one. On the left side of the colon is the parameter supplied to the
lambda expression; on the right is the expression (x+1) that provides the result.

When the program runs, the map function generates an iterator that will apply the incre-
ment function to each of the elements in the numbers list. This program works, but it is rather
tedious to have to type in the increment function and give it a name. We can do this much
more simply by creating a lambda expression that describes the increment behavior. We can
use the value of this expression as an argument to the map call. Enter the statement below:

>>> new_numbers = map(lambda x : x+1, numbers)

The call to the increment method has been replaced by a lambda function that accepts
a single parameter and returns the value of that parameter plus one. Remember that the
map function returns an iterator that works through the given collection and returns a new
collection. We can view the contents of the new_numbers iterator by using the Python list
function to convert this iterator into a list. Enter the following statement and press Enter:

>>> list(new_numbers)

[2, 3, 4, 5, 6, 7, 8, 9]

As you can see, the new_numbers list holds the incremented values from the list. You can find
this example code in the sample file EG12-04 Lambda Example.

We can do another “lambda” investigation by creating a lambda expression and assigning it
to a variable. Type in the following and press Enter:

>>> adder = lambda x, y : x+y

The expression on the right side of this assignment is a lambda expression that accepts two
parameters (which I’ve called x and y) and returns their sum. This function is then assigned to
the variable adder.

We can now use adder as a function in our programs. Type in the following and press Enter:

>>> adder(1, 2)

When you press Enter, Python follows the adder reference to the lambda expression and
evaluates it.

>>> adder(1, 2)

3

448 Chapter 12 Python applications

Lambda expressions
You might have some questions about lambda expressions.

Question: What are lambda expressions?

Answer: You can think of a lambda expression as a lump of data that describes an oper-
ation to be performed on something. We already explored the idea of passing method
references into functions. In the previous section, we used this technique to tell the
read_number function which number decoding function to use. We tell read_number
to use the float or int functions when it reads a number by passing the read_number
function an argument that specifies the function to use.

In the case of the read_number function, we had to give it the names of the functions
(int or float) that we wanted it to use. In the case of a lambda expression, we create a
value that contains the behavior itself.

Lambda expressions are sometimes called anonymous functions because they are little
bits of functional behavior (they do something with an input to produce a result) that
don’t have a name.

Question: Must I use lambda expressions in my programs?

Answer: No. Lambda functions don’t allow us to do new things, but they do make writ-
ing programs easier and quicker. Lambda functions are particularly useful when used in
conjunction with Python’s map and filter functions.

Question: Can a lambda function contain more than one action?

Answer: No. The active part of a lambda function is a single expression that calculates
the value to be returned.

Question: Can a lambda expression accept multiple arguments?

Answer: Yes, it can. The first lambda expression we wrote, which we used to add one to
the values in a list, had only a single argument. The second expression, which returned
the sum of two values, had two arguments. You can use as many arguments as you like.

Question: Can a lambda expression make decisions?

Answer: A lambda function can return True or False as its result, which can be used in
conditions in programs. It can also use an expression called a conditional expression to
allow it to choose a value to return. We haven’t seen conditional expressions before. They
allow a single expression to provide a result controlled by a Boolean expression.

hour = 8 # set the value of hour to the current hour of the time

print('morning' if hour < 12 else 'afternoon')

The print statement above prints the result of a conditional expression that generates
the value morning if the hour is less than 12 and the value afternoon if the hour is

CODE ANALYSIS

449Advanced functions

greater than or equal to 12. You can see the anatomy of a conditional expression in the
diagram below.

condition
(condition that can

be True or False)

elseifvalue
(value of expression if

condition is true)

value
(value of expression if

condition is false)

You can use conditional expressions anywhere you can use an expression in a Python pro-
gram. A lambda expression can return the value of a conditional expression:

day_prompt = lambda hour:'morning' if hour < 12 else 'afternoon'

The statement above creates a function called day_prompt that accepts a single parameter
and returns morning if the value of that parameter is less than 12. The variable day_prompt is
set to refer to this function. We can use this as follows:

print(day_prompt(5))

The statement above calls the lambda expression referred to by the variable day_prompt.
The value 5 is supplied as an argument to the lambda expression, which produces the value
morning. So, the statement above would print morning.

450 Chapter 12 Python applications

PROGRAMMER’S POINT

Don’t worry if you don’t get lambda expressions the first time
you see them
It took me a while to understand lambda expressions. Don’t worry if they seem difficult to
understand at first. They represent a blurring between data and program code. Up until
now, our applications have been made up of data (which holds values) and code (which
gives the operations to be performed on the data). A lambda expression is a piece of data
that specifies an action to be performed. Sometimes, it’s useful to be able to create a piece
of program code that you can pass around like a lump of data, and lambda expressions
provide a way of doing this.

451Advanced functions

Iterator functions and the yield statement
In Chapter 10, when we first used the map function, we came across the Python iter-
ator. If you’re not clear on what an iterator is, go back through the “Make Something
Happen: Investigating the map function and iteration” section.

Up until now, the programs we’ve written have used iterators by consuming the
values they produce. In other words, the programs have worked through the results
that an iterator generates. One of the first iterators we encountered was generated
by a built-in Python function called range. We used the range function to create a
sequence of numbers:

for i in range(1, 5):

 print(i)

The range function in the code above returns a result that is an iterator that produces
the values 1 to 4. The above statements would consume the iterator and print the
values 1 to 4. Remember that the upper value of the range represents the value that
terminates the range, not the last value in the range.

1

2

3

4

In this section, we’ll discover how to create our own iterators. We can make an iterator
by using a Python statement that we haven’t seen before: yield. In English, the word
“yield” can be used in more than one way. It can be used when two knights are fight-
ing for the hand of the princess. At some point in the fight, one knight will say, “I yield”
and let the victorious knight get the girl. Another way of using yield is to say that an
apple tree might “yield” (produce) some fruit that you can take home and use in a pie.
The latter meaning of yield best represents what yield does in Python programs.

A yield statement allows a function to “yield” a result. When a function yields a result,
the value of the result is returned to the caller, but Python remembers the position
reached in the function. The next time the function is called, the function resumes
from the statement following the yield. A function that contains yield statements can
return a sequence of values, each of which is returned by the next yield encountered
when it runs. In other words, a function that contains yield statements can act as an
iterator in a Python program.

Investigating yield
The best way to find out about yield is to use it in some functions. Open the Python Com-
mand Shell in IDLE and enter the statements below followed by an empty line after the last
yield statement.

>>> def mr_yield():

 yield 1

 yield 2

 yield 3

 yield 4

>>>

We’ve created a function called mr_yield that contains four yield statements. Each yield
returns a value. We can use this function in a loop. Enter the following statements to create
a loop that uses mr_yield as an iterator.

>>> for i in mr_yield():

 print(i)

When you enter an empty line after the print statement, the loop is performed:

>>> for i in mr_yield():

 print(i)

1

2

3

4

MAKE SOMETHING HAPPEN

452 Chapter 12 Python applications

We can also use the results generated by mr_yield to create a list of the values that the
function yields. Enter the following statement:

>>> list(mr_yield())

We’ve used the list function before. It accepts an iterator as an argument and uses the
argument to generate a list of results produced by the iterator. Press Enter to call the list
function and generate the output:

>>> list(mr_yield())

[1, 2, 3, 4]

453Advanced functions

Create a test data generator using yield
We can use the yield keyword to make a very flexible test data generator for our Time
Tracker application. Suppose that our customer for the Time Tracker application we
developed in Chapter 10 wants to see our application work with hundreds of contacts
before she begins using it. This is a very sensible request for a customer to make. We
might provide a program that will work well with ten people but will fail when we add
a few more. We don’t want to spend a week typing in fake contacts, so we decide to
use our programming skills to create some test data.

PROGRAMMER’S POINT

Using a program to create test data is a great idea
Many years ago, we set up a student project that used GPS (global positioning system)
enabled mobile phones. The students had to make a program that would tell them when
they were late for a lab session. The idea was that their application would tell the user when
to start walking toward their lab. The application knew the locations of the phone and
the lab.

Some students tested their programs by walking around the campus, but the smarter
ones just walked around once, recorded the GPS locations of a few points, and then fed
their programs the recorded locations during testing. Using this method saved them a lot
of walking around. If you find yourself entering lots of test data into your programs, you
should write a program to do that work for you. Remember that computers were created
to spare us from drudgery, not create more of it.

454 Chapter 12 Python applications

EG12-05 Test contact generator

class Contact:

 def __init__(self, name, address, telephone):

 self.name = name

 self.address = address

 self.telephone = telephone

 self._hours_worked=0

 @staticmethod

 def create_test_contacts():

 phone_number = 1000000

 hours_worked = 0

 for first_name in ('Rob', 'Mary', 'Jenny', 'David', 'Chris', 'Imogen'):

 for second_name in ('Miles', 'Brown'):

 full_name = first_name + ' ' + second_name

 address = full_name + "'s house"

 telephone = str(phone_number)

 phone_number = phone_number + 1

 contact = Contact(full_name, address, telephone)

 contact._hours_worked = hours_worked

 hours_worked = hours_worked + 1

 yield contact

 create_test_contacts is a static method

 Start the test phone numbers at 1000000
 Start the test number of hours at 0

 Loop through second names
 Create the full name

 Create the address

 Move on to the next phone number

 Yield the contact that’s been created

 Add 1 for the next contact hours worked value
Set the hours_worked for the result

Create a Contact as the result
Create a string for the telephone number

Loop through first names

The code sample above shows a Contact class that contains a static function called
make_test_contacts. The function creates 12 test contacts with names ranging from
“Rob Miles” to “Imogen Brown.” It uses two tuples; one contains some first names and
the other contains some last names. The function creates a contact using each com-
bination of names and delivers it to the caller using a yield statement. Each contact
created has an hours_worked value that is one hour larger than the previous one. The
function uses a similar technique to generate different phone numbers for each of
the contacts. The address string for each contact is created by adding 's house to the
end of the name string. These contacts will provide a useful test set that we can use to
demonstrate the program. If we want to create more contacts, we simply need to add
more names to the first and second name tuples:

Using yield to generate test contacts
You might have some questions about the preceding code.

Question: Why is create_test_contacts a static method?

Answer: We would not ask a specific Contact object to give us a set of test data. We
don’t want to have to create an instance of the Contact class just so we can get some test
contacts. Instead, we should ask the Contacts class to do this.

Question: What is the difference between yield and return?

Answer: Good question. The yield statement causes Python to note the position
reached in the function before it delivers the value to the caller. This position is then used
to continue the function if another value is requested from the iterator.

A return statement just returns the value and informs the caller that the function is
complete. As an example, consider the following:

def yield_return():

 yield 1

 yield 2

 return 3

CODE ANALYSIS

455Advanced functions

for first_name in

('Rob','Mary','Jenny','David','Chris','Imogen','Marilyn','Julie','Tim'):

 for second_name in ('Miles', 'Brown', 'Smith', 'Jones'):

These two loops would create 36 contacts. We can use the create_test_contacts to
generate an iterator that our programs can use.

for contact in Contact.create_test_contacts():

 print(contact.name)

The two statements above would print out the name attribute of each test contact.

contacts = list(Contact.create_test_contacts()

This statement creates a list of contacts containing all the test contacts.

 Loop through
second names

 Work through each contact
 Print some contact information

 yield 4

for i in yield_return():

 print(i)

The function yield_return uses yield to return the first two values and then uses a
return statement to return the third value. The use of return at this point has the effect
of ending the iteration, which means the yield that delivers the value 4 is never reached.
When we run the above program, it prints the following:

1

2

Note that the value 3 (which is returned by the return) is not used as part of the iteration.

Question: Does a function using yield have to return?

Answer: An iterator function using yield can run forever. Consider the following function:

def forever_tens():

 result = 0

 while True:

 yield result

 result = result + 10

The forever_tens function creates an iterator that will return an infinitely long iteration.
Each value that it returns will be ten larger than the previous one.

for result in forever_tens():

 print(result)

 if result > 100:

 break

This loop displays the values in the iterator until the value of the result exceeds 100. It
uses a condition and a break to stop the loop when this point is reached.

Question: What happens to local variables in a yielded function?

Answer: The variables local to the function are retained when the function yields a result.
You see this in the function forever_tens above. Each time the iterator is asked for the
next number in the sequence, the value of result has been retained from the previous
time the method was active.

456 Chapter 12 Python applications

Investigating arbitrary arguments
Let’s see what we mean by arbitrary arguments by creating some functions. Open the
Python Command Shell in IDLE and enter the statements below. Enter an empty line after the
return statement.

>>> def add_function(x, y):

 return x + y

>>>

We’ve created a function called add_function that returns the sum of two arguments.
We can use this function to add two numbers. Enter the following text:

>>> add_function(1, 2)

MAKE SOMETHING HAPPEN

457Advanced functions

Functions with an arbitrary number
of arguments
We now know a lot about functions, but there might still be some things you find
confusing about them. One thing we’ve used throughout this book is the ability of the
print function to accept different numbers of arguments:

print('Hello world')

print('The answer is',42)

Both of these calls to the print function will work perfectly well, even though the
first call has a single parameter and the second has two. When we’ve created and
used functions, we’ve been very careful to make sure that the number of arguments
given to a function call matches the number of parameters that the function has been
defined to accept. In other words, when we’ve defined a function that accepts two
parameters, we’ve made sure to provide two arguments when the function is called.
However, the print function has been defined to accept an arbitrary number of
arguments. In this context, the word arbitrary means a value that is not set when the
function is defined. Let’s find out how this works.

When you press Enter, the function is called, and it returns the result we expect.

 >>> add_function(1, 2)

3

Unfortunately, it is not possible to use this function to add more than two numbers. Try add-
ing three numbers. Type in the following text:

>>> add_function(1, 2, 3)

When you press Enter, Python tries to match the arguments that were supplied to the param-
eters in the function definition. Unfortunately, they do not match, so an error is displayed.

>>> add_function(1, 2, 3)

Traceback (most recent call last):

 File "<pyshell#29>", line 1, in <module>

 add_function(1, 2, 3)

TypeError: add_function() takes 2 positional arguments but 3 were given

458 Chapter 12 Python applications

Python makes sure that the function call matches the function definition and will
produce an error if the two don’t match. We can tell Python that a function accepts an
arbitrary number of arguments by adding an * (meaning multiple) to the parameter
description for the function. When the function is called, Python takes the supplied
arguments and creates a list that is supplied to the method when it runs.

def add_function(*values):

 total = 0

 for value in values:

 total = total + value

 return total

 A * in front of the name means “arbitrary number”
 Set the total to the start value

 Work through the parameters supplied in the list
 Add the value to the total

 Return the total

459Advanced functions

The above version of add_function can accept any number of arguments, including
no arguments at all. The function contains a for loop that works through the list sup-
plied as a parameter and adds each value to the total. Below you can see the function
being called with three arguments.

>>> add_function(1,2,3)

6

When the add_function is called, it can be given as many parameters as required. You can
find a demonstration of add_function in the sample file EG12-06 Arbitrary Arguments.

A parameter denoting a list of arbitrary arguments can be preceded by a parameter
that must be supplied to the function call. Perhaps we want to force a programmer to
supply at least one value to a call to add_function. We can do this by adding a param-
eter, perhaps called start, which starts the list of values. This parameter is followed by
a list of arbitrary length. The version of add_function below must be supplied with at
least one parameter.

def add_function(start, *values):

 total = start

 for value in values:

 total = total + value

 return total

The final situation we need to address is when a programmer already has a list of
values she wants to feed into the method call.

numbers = (1, 2, 3, 4)

The tuple numbers defined above can’t be given as an argument to add_function
because it is already a list. Fortunately, we can ask Python to “unpack” the tuple and
supply each value as an individual argument when the function is called. We do this
by adding an asterisk (*) character before the argument name:

>>> add_function(*numbers)

10

When add_function is called, each value in numbers is converted into an individual
argument, which is passed into the function call.

 A * in front of the name means “arbitrary number”
 Set the total to the value of the first parameter

 Work through the parameters supplied in the list
 Add the value to the total

 Return the total

460 Chapter 12 Python applications

A much easier way of adding things in a list is accomplished with the sum function. We
could rewrite the add_function as follows:

def add_function(*values):

 return sum(values)

Modules and packages
In this section, we’ll investigate how to build large Python applications out of individ-
ual source files. We’ve already used modules in our programs; now we’ll discover more
module features and how to use packages.

Python modules
In Chapter 7, we created some functions that made it very easy for us to read text and
numbers. We used these functions extensively in the programs we’ve written since
Chapter 7. We stored the program code for these functions in a file called BTCInput.py.
Programs that wanted to use these functions had to import that BTCInput file to use
them. In Python, these files are called modules. Below, you can see the BTCInput module
being used in a program that reads an age value from the user. The read_int_ranged
function is defined in the BTCInput module. This function is given a prompt, a minimum
value, and a maximum value. The read_int_ranged function then ensures that the value
entered by the program user is in the specified range.

The * character in function arguments can confuse
C and C++ programmers
Python uses the * character in a function argument to mean, “Please unpack the elements
in this collection and pass them as individual arguments to the function call.” Unfortunately,
other programming languages, notably C and C++, use the * character in a very different
way, involving the use of pointers. If you already use C or C++, the * character usage will likely
confuse you in Python. Unfortunately, this is just something you’ll have to sort out.

WHAT COULD GO WRONG

461Modules and packages

EG12-01 Using a BTCImport function

import BTCInput

age = BTCInput.read_int_ranged(prompt='Enter age: ', min_value=5, max_value=95)

print('Your age is: ', age)

Python obeys all the statements in a module when the module is imported. In the
BTCInput module, these statements define the functions that the module provides.
Modules are very useful. Anytime you want to create some code that can be used in
several different programs, you can create a module file.

Add a readme function to BTCInput
The BTCInput.py source file contains a set of functions provided by the module. The
following code adds a readme function to these that describes the library itself:

def readme():

 print('''Welcome to the BTCInput functions version 1.0

You can use these to read numbers and strings in your programs.

The functions are used as follows:

text = read_text(prompt)

int_value = read_int(prompt)

float_value = read_float(prompt)

int_value = read_int_ranged(prompt, max_value, min_value)

float_value = read_float_ranged(prompt, max_value, min_value)

Have fun with them.

Rob Miles''')

The readme function above displays a string that describes each of the functions in the
module. A programmer using this module can call the readme function to find out what
the module does. Currently, the description is just a fixed string of text that’s printed.
In the section “Using pydoc” later in this chapter, we’ll find out how to generate this
description text from the function documentation strings we added to the beginning of
each function, as described in Chapter 7, “Add help information to functions.”

 Import the BTCInput module

 Call a function from the module

462 Chapter 12 Python applications

Run a module as a program
There’s nothing special about a Python module file. We can treat the BTCInput.py
file as a Python program if we wish and run it. When we run the BTCInput.py module
as a program, the Python statements in it are executed. We could add a call to the
readme function to the module so that if the module is executed, the module will
introduce itself.

all the BTCInput functions go here

Have the BTCInput module introduce itself once the

functions have been defined

readme()

However, this statement will also be obeyed when the module is imported, which is
something we don’t want. Below, you can see the result of running EG12-07 Using a
BTCImport function with our new “friendly” version of the BTCInput module. The
readme message is displayed because when a module is imported, all the statements
in the module are obeyed, including the readme call. This behavior can be useful if a
module needs to perform some statements to set itself up, but in this case, the mod-
ule is printing a message when we don’t want it to do so.

RESTART: C:/Users/Rob/ EG12-01 Using a BTCImport function.py

Welcome to the BTCInput functions version 1.0

You can use these to read numbers and strings in your programs.

The functions are used as follows:

text = read_text(prompt)

int_value = read_int(prompt)

float_value = read_float(prompt)

int_value = read_int_ranged(prompt, max_value, min_value)

float_value = read_float_ranged(prompt, max_value, min_value)

Have fun with them.

Rob Miles

Enter age: 25

Your age is: 25

 This is the output from the readme function
 This is the output from the read_int_ranged function

Checking program context
We can investigate this module execution by using the BTCInput module and one of the
example programs. You can find the BTCInput module and an example program in the code
samples folder for this chapter. Start the IDLE program and use the File, Open commands to
open the files BTCInput.py and EG12-07 Using a BTCImport function.

First, we’ll run the BTCInput file as a program. Select the edit window for this file and
select Run, Run Module to run the module as a program. You will see the friendly
message displayed.

Now select the edit window for the sample program and run that. You’ll see that the
read_int_ranged method runs, but the friendly message is not displayed.

MAKE SOMETHING HAPPEN

463Modules and packages

Detect whether a module is executed
as a program
Creating a module that displays a friendly message when it’s executed as a program is
a good thing to do, but we don’t want the message to be displayed when a program
imports the module.

Fortunately, Python provides a special variable called __name__ that a program can
use to determine the name of the context in which the code is running. If a statement
is running within an imported module, the value of __name__ is set to the name of
the module. If a statement is running within code started as a program, the value
of __name__ is set to the string '__main__'. We can use the __name__ variable in the
BTCInput module to make the module only display the readme information when it is
run as a program.

if __name__ == '__main__':

 # Have the BTCInput module introduce itself

 readme()

Now the BTCInput module introduces itself only when it’s running as a program. If it’s
imported into another program, the readme is not displayed.

464 Chapter 12 Python applications

It is often very useful to make a module also function as a program. If a module per-
forms a mathematical calculation, it could request some numbers and then display the
result. Alternatively, the module could perform a set of demonstrations to show off
what it can do.

Create a Python package
A very large Python program might contain many different program files. In this
section, we’ll explore how Python packages work, and we’ll learn some very powerful
Python features along the way.

Until now, every Python program we’ve written has been stored in a single Python
file. In Chapter 8, we started using the module called BTCInput that we used in many
of our programs, but the programs themselves have been single files of code. It makes
sense to put each Python class in an application into a different Python source file;
doing so is convenient for multiple programmers working on a single application.
Each class in the application imports the classes it needs to use, just like our programs
have imported the BTCInput module whenever they needed to read information
from the user.

As we learned in Chapter 11 with our Fashion Shop application, we can divide the
classes that implement the application into two distinct kinds. One kind of class stores
the data, and the other talks to the program user. We can think of these as two differ-
ent packages of classes.

Next, we’ll learn how to create a Python package, which is quite easy. A Python
package is simply a subfolder (or directory) on a storage device that contains a set of
Python source files, one of which must be called __init__.py.

Figure 12-2 shows a package I’ve created called Storage. The Storage package con-
tains the FashionShop and StockItem classes for the Fashion Shop application.

Figure 12-2 A Python package

Making modules
You might have some questions about modules.

Question: How do I decide which module goes in which package?

Answer: It makes sense to put related classes into a single package. The two obvious
distinctions we’ve used in the Fashion Shop include:

 ◦ User interface modules, which talk to the user, go into one package.

 ◦ Data storage modules, which hold the actual Fashion Shop data, go into
another package.

Question: What does the __init__.py file in a package do?

Answer: The _init_.py file provides a way for a programmer to gain control when a
package is loaded. The Python statements in the __init__.py are obeyed when the
package folder is first opened. You can think of this as an initializer for packages. The
__init__.py file can set up resources and could contain a help string that describes the
package contents.

CODE ANALYSIS

465Modules and packages

The complete set of packages that I’ve created for the Fashion Shop application look
like this:

 FashionShopShellUI.py

 ShellUI

 BTCInput.py

 FashionShopShell.py

 __init__.py

 Storage

 FashionShop.py

 StockItem.py

 __init__.py

The ShellUI package contains the classes that generate the Python Command Shell
user interface version of the Fashion Shop. Note that this package contains the shell
program and the BTCInput package. The Storage package contains the data storage
classes. Note that both folders also contain an __init__.py file. Currently, these are
empty files.

Use classes as values
Using classes as values made my head hurt the first time I heard about it, but I discovered that it’s
worth learning. We can do some experiments to see how this works using the Python Command
Shell in IDLE. Enter the statements below, and enter an empty line after the print statement.

>>> class VarTest:

 def __init__(self):

 print('making a VarTest')

>>>

MAKE SOMETHING HAPPEN

466 Chapter 12 Python applications

Import modules from packages
A program can import a module from a package. The statement below imports the
FashionShop module from the Storage package:

from Storage import FashionShop

The effect of this statement is to make the items in the FashionShop module available
for use by our program. Now that we have the FashionShop module available in our
program, we can use the classes that are defined within it:

shop = FashionShop.FashionShop

This statement looks a bit confusing. It’s an assignment, but what is it assigning?
Above, we’re using the FashionShop class from the FashionShop module. We are then
setting the variable shop to refer to this class. If we had placed the FashionShop class
in a module called DiskStorage (something we could have done), the statement would
look like this:

shop = DiskStorage.FashionShop

The value being assigned to shop is a reference to the FashionShop class, which is
something we’ve never done before. We’ve assigned strings, integers, and functions
to variables, but we have never assigned a class to a variable. Let’s take a closer look at
how this works, and what it means.

We’ve created a class called VarTest that contains an initializer, which just prints a message.
Let’s see what happens if we create an instance of VarTest. Type in the following statement
that creates an instance of VarTest and makes the variable x refer to it.

>>> x = VarTest()

When you press Enter, the __init__ method in the VarTest class is performed, and it prints
the message we would expect.

>>> x = VarTest()

making a VarTest

>>>

This result is not terribly surprising. We created a class and then made an object from that
class. However, let’s do something slightly different. Type in the following statement and
press Enter.

>>> y = VarTest

This code looks very much like the assignment of the variable x that we just performed, but
with one significant difference. There are no parentheses after the name of the class. In this
assignment, the value of varTest is assigned to y, which means y is now a variable that refers
to a class. We can use the variable y in the same way as we would use varTest. For example,
we can make a new instance of y.

>>> z = y()

making a VarTest

>>>

When the reference y is followed, it sends Python to the VarTest class, and by creating an
instance of y, makes a a VarTest instance.

A program can treat class references in the same way as any other type of data. We can
make lists of class references, store them in dictionaries, and pass them as arguments to
function calls. If we revisit the statement below, we see that the variable shop has been
set to refer to the FashionShop class that manages the Fashion Shop data items.

shop = FashionShop.FashionShop

467Modules and packages

References to classes
References to classes is very strong, and potentially confusing, programming practice.

Question: What are the benefits of using class references?

Answer: We don’t have to use class references in this way. We could create an application
that has the data storage and the user interface in a single class. However, in the next
chapter, we’ll create a Fashion Shop manager program that has a GUI (graphical user
interface). We can pass the GUI a FashionShop class to use for data storage.

If we create a version of the FashionShop class that uses a database to store the data, we
can pass that class into the user interface to make a version of the program that works
with databases. We’ve talked about objects as components, and these abilities are how,
with the proper design, we can swap elements of a system very easily.

You can think of the association between the FashionShop class and a user interface
class as a bit like the connection between a monitor and a PC. Because both the PC and
the monitor use the same connection standard, we can swap the device at either end of
the connection, and the system will still work.

CODE ANALYSIS

Now we need to work out how to use the classes in these packages to make our
application work. The file FashionShopShellUI.py is the program we’ll run to make the
Fashion Shop work. The file FashionShopShellUI.py will create a user interface and
display it on the screen. Below, you can see the first part of the program. It creates two
variables. The variable ui refers to the user interface class we’ll use; the variable shop
refers to the FashionShop storage class we’ll use.

Loads a user interface class and a data manager class

and then uses these to create an application

Get the module containing the user interface class

from the ShellUI package

from ShellUI import FashionShopShell

468 Chapter 12 Python applications

Next, we’ll show Python’s power by passing this shop reference into the class that
controls our Fashion Shop user interface. Using Python in this way is the ultimate
expression of component-based software design. We have created a complete com-
ponent—the FashionShop class—that manages all the data storage needs of the fash-
ion shop. We can give this component to the user interface component that provides
a means for the user to interact with the data that this component manages.

469Modules and packages

Get the user interface manager class from this module

ui = FashionShopShell.FashionShopShell

Get the module containing the data storage class

from the Storage package

from Storage import FashionShop

Get the data manager class from the storage module

shop = FashionShop.FashionShop

Now that we have our user interface and our two shop classes, we need to build an
application from them, which is much like plugging a monitor into a PC.

app = ui(filename='simplefashionshop.pickle', storage_class=shop)

This statement creates an instance of the class to which ui is referring. It passes two
parameters to the initializer for this class: the name of the file that contains the shop,
and the storage class that will manage this data. Remember that the variable ui refers
to the FashionShopShell class, so this is the class that is actually created:

class FashionShopShell:

 def __init__(self, filename, storage_class):

 FashionShopShell.__filename = filename

 try:

 self.__shop = storage_class.load(filename)

 except:

 print('Fashion shop not loaded.')

 print('Creating an empty fashion shop')

 self.__shop = storage_class()

The FashionShopShell initializer method __init__ creates an attribute called __shop
for which the FashionShopShellUI will provide a user interface. In the next chapter,
we’ll create a FashionShopGUI class with an initializer that is initialized in the same way
but provides a graphical user interface.

Now that we have our user interface running, we must next ask it to display the main
menu for the application.

 # Now call the main_menu function on the app

app.main_menu()

 Create the user
interface

 Called to set up a class instance
 Copy the file name for later use

 Call the load method on the supplied class to try and load the data

 If the load fails, create an empty fashion shop

470 Chapter 12 Python applications

The example application in the folder EG12-08 FashionShopApp in the sam-
ples folder for this chapter implements the Fashion Shop application using mod-
ules and packages. You can open the Fashion Shop by running the program
FashionShopShellUI.

PROGRAMMER’S POINT

Using classes as values is extremely strong programming magic
We’re using a programming technique with the wonderful name of dependency injection.
The idea behind this is that we inject something (in our case, the FashionShop storage
class) into another class (in this case, the user interface class) to give the second class some-
thing with which to work. In the Fashion Shop application,we can change the class we’re
injecting (or “passing into the constructor”) into the user interface class to make the user
interface work with different types of storage devices.

If you’re confused about all this (quite understandably), just remember why we’re doing
this. We want to be able to use the FashionShop storage class with both the command
shell and GUIs. Also, we want to be able to switch our storage system for a different one
(which perhaps uses databases) without having to change the behavior of the user inter-
face classes. By using references to classes, we can create a program that “wires up” one
class to another to build an application that functions the way that we want.

Program testing
Some programmers don’t seem to know what the word “testing” really means. They
will say things like, “I’ve tested the program, and it seems to work.” What this usually
means is that they’ve run the program, entered a few things, looked at the results, and
decided that everything is working properly. To me, this is a bit like saying that they’ve
tested a new airplane by counting how many wings it has and have gotten the number
they were expecting. One of the things that separates “professional” software from
“ordinary” software is the amount of testing that it should have. In other words, if you
want to sell your software, you should ensure that you have properly tested it.

When engineers test a new plane, they do a lot more than just count the wings.
Aircraft manufacturers have a very highly developed set of tests that they perform on
each plane they make. The tests are:

 ● Repeatable (the same tests are performed each time on each plane)

 ● Documented (they produce a detailed test report for each aircraft)

 ● Automatic (they have built machines to automate as much of the testing as possible)

471Program testing

In this section, we’ll look at Python features that make it possible to create tests for
our applications. Let’s make some tests for the StockItem class from the Fashion Shop
application. We want to make sure that new StockItem objects are created with the
correct initial settings, attempts to create invalid StockItem objects are rejected, and
that the StockItem itself works correctly.

We could test these things by hand, entering values into the program and observing
what happens. However, this would quickly get very tedious, particularly when we
remember that we must perform all our tests after every change to the StockItem
class. If we add a new feature or fix a fault, we must repeat all the tests because one of
the main causes of faults in programs is fixes for other faults.

Writing our own code that automatically tests our applications makes more sense. The
code below creates a new StockItem and then checks the stock_level value to make
sure that it has been initialized with the value zero. If this is not the case, an exception
is raised.

item = StockItem(stock_ref='Test', price=10, tags='test:tag')

if item.stock_level != 0:

 raise Exception('Initial stock level not 0')

The idea is that we will have lots of tiny tests like the one above, and then repeat these
tests each time the program is updated. If we were making a very large application,
we’d run all the tests like these on the code in the system automatically every day,
perhaps overnight. In some languages, you would have to perform your testing using
constructions like this. However, Python provides a few extra tricks that we can use to
make testing programs as easy as possible.

The Python assert statement
Python provides a language construction called assert that programs can use to test
themselves as they run. In English, the word “assert” means “stating firmly something
that you believe to be true.” I could use the assert mechanism to perform the previ-
ous test of the StockItem class:

item = StockItem(stock_ref='Test', price=10, tags='test:tag')

assert item.stock_level == 0

The assert statement is followed by a Boolean value that you believe to be true for
the program. In the above code, I’m saying that the stock_level attribute of the
object referred to by item should be zero. If the assertion succeeds, (in other words,

 Make a test StockItem
 Is the stock level zero?

 If the stock level is not zero,
raise an exception

 Make a test StockItem
 Assert that the initial

stock level is zero

472 Chapter 12 Python applications

the value of stock_level is indeed zero), the program continues. If the assertion fails,
the program stops with an error:

Traceback (most recent call last):

 File "C:/Users/Rob/Test Program.py", line 20, in <module>

 assert item.stock_level == 0

AssertionError

Python Assertions
Question: How many assert statements can a program contain?

Answer: You can have as many assertions as you like.

Question: Does the program continue after an assertion has failed?

Answer: The program will not continue if an assertion fails. When an exception is raised
the program stops running. A program can use the try…except construction to catch
assertion failures, so a program could display a message to indicate that something
had failed.

CODE ANALYSIS

The Python unittest module
You can add assert statements to your programs to make you more confident that
they are working properly. However, Python also provides a framework that makes
it easy to create lots of small tests and run them. Each of the tests is called a unit test
because it’s designed to perform a small test on one particular unit in the program.
The idea behind unit tests is that programmers develop the tests for their components
at the same time they create them. In fact, there’s also a form of development called
test driven development in which the tests are created before the actual components.
Code is then added to the components so that they pass the tests.

The unittest module is provided as part of a standard Python installation. We can
import the unittest module into a program in the usual way:

import unittest

473Program testing

The unittest module contains a class that serves as the superclass of any test classes
we create. The idea is that we create a class that is a subclass of the test class and fill it
with methods that perform unit tests. Code in the unittest module will automatically
run the unit test methods for us and report on the test results.

class TestShop(unittest.TestCase):

 def test_StockItem_init(self):

 item = StockItem(stock_ref='Test', price=10, tags='test:tag')

 self.assertEqual(item.stock_ref, 'Test')

 self.assertEqual(item.price, 10)

 self.assertEqual(item.stock_level, 0)

 self.assertEqual(item.tags, 'test:tag')

The TestShop class above is defined as a subclass of the TestCase class, which is found
in the unitTest module. The class contains a method called test_StockItem_init,
which has been created to ensure that new StockItem values are created with the
correct initial values.

The method assertItemEqual performs the testing of the code. It works similarly to
the assert statement we saw above. The method is supplied with two arguments. If the
arguments are equal, the test passes. The test_StockItem_init method ensures that
the arguments are correctly passed into a new StockItem and that the initial stock level
of the item is zero. We can run the tests simply by calling main in the unittest module:

unittest.main()

The unittest framework finds all the classes that have been created and searches each
class for method attributes that have names beginning with _unittest and then calls
each of the methods in turn. If an assertItemEqual method fails (in other words, the
two items in the method are not equal), that test method is abandoned, and an error
is reported for that test. Once the test methods complete, the framework produces a
brief report:

.

--

Ran 1 test in 0.037s

OK

 Make a test object

 Was the name set correctly?
 Was the price set correctly?

 Is the initial stock level zero?
 Was the tag set correctly?

474 Chapter 12 Python applications

If you want a bit more detail in the report, you can select a more verbose level
of output:

unittest.main(verbosity=2)

The report now contains the name of each method tested:

..

test_StockItem_init (__main__.TestShop) ... ok

--

Ran 1 test in 0.013s

OK

We can discover what happens when a test fails by creating a test that’s guaranteed
not to work. We could assert that 1 is equal to 0:

def test_that_fails(self):

 self.assertEqual(1, 0)

If we add the above method to the test class and rerun the tests, we get output that
identifies the failed statement and the error:

.F

==

FAIL: test_that_fails (__main__.TestShop)

--

Traceback (most recent call last):

 File "C:/Users/Rob/OneDrive/Begin to code Python/ tinytest.py",

 line 16, in test_that_fails

 self.assertEqual(1, 0)

AssertionError: 1 != 0

--

Ran 2 tests in 0.008s

FAILED (failures=1)

475Program testing

The following table shows all the possible assertions that a program can use to test the
behavior of statements in a program.

TEST FUNCTION TEST ACTION EXPLANATION

assertEqual(a, b) Asserts that a is the same
as b

Use this to test two values to see whether they are
the same

assertNotEqual(a, b) Asserts that a is not the
same as b

Use this to test two values to see whether they are
identical

assertTrue(b) Asserts that the b is True Use this to test whether a Boolean expression or value
is True

assertFalse(b) Asserts that b is False Use this to test whether a Boolean expression or value
is False

assertIs(a, b) Asserts that a and b refer
to the same object

Use this to test whether two references refer to the
same object. Note that this is not the same as assert-
Equal, as assertEqual will return True if the objects are
different but contain the same value.

assertIsNot(a, b) Asserts that a and b do not
refer to the same object

Use this to test whether references do not refer to the
same object

assertIsNone(r) Asserts that variable r is
None

Use this to test whether a variable has been explicitly
set to the None value

assertIsNotNone(r) Asserts that variable r is
not None

Use this to test whether a variable is not set to the
value None

assertIn(a, b) Asserts that a is in b Use this to test whether a value is in a collection (list or
tuple) of items

assertNotIn(a,b) Asserts that a is not in b Use this to test whether a value is not in a collection
(list or tuple) of items

assertIsInstance(a,b) Asserts that a is an
instance of type b

Use this to test that a reference refers to an object of
a particular type. You could test whether a reference
refers to a StockItem

assertNotIsInstance(a,b) Asserts that a is not an
instance of type b

Use this to test whether a reference does not refer to
an object of a particular type

Test for exceptions
We can use the assertions above to check values in our test functions, but there is
one other thing for which we would like to test. We’d like to be able to test whether a
method raises an exception when things go wrong. Consider the following code:

item = StockItem(stock_ref='Test', price=10, tags='test:tag')

item.add_stock(-1)

 Create a test StockItem
 Try to add -1 items to

stock, which should fail

476 Chapter 12 Python applications

The first statement creates a StockItem. The second statement tries to add -1 to the
stock level of this item. This is not a valid action (we can’t add -1 items to stock), and
the add_stock method raises an Exception to indicate that it’s being used incorrectly.
We need to create a test to prove that the exception was raised, but this involves quite
a few statements. Fortunately, the unittest framework provides an easy way to test
for this behavior:

with self.assertRaises(Exception):

 item.add_stock(-1)

The test uses the Python with construction, which is a way of creating objects used for
a specific action. We first saw the with construction in Chapter 8 when we used it to
manage file access. The assertRaises method uses with to create an action that can
catch an Exception that should be raised. Below, you can see the result of the excep-
tion not being raised. I’ve modified the test so that it adds 1 item to stock, which will
not cause an exception. Adding -1 to the stock will cause the test to fail.

F.

==

FAIL: test_StockItem_add_stock (__main__.TestShop)

--

Traceback (most recent call last):

 File "C:\Users\Rob\OneDrive\Begin to code Python\Part 2 Final\Ch 12

 Python Libraries\code\samples\EG12-09 TestFashionShopApp\tinytest.py",

 line 25, in test_StockItem_add_stock

 item.add_stock(1)

AssertionError: Exception not raised

--

Ran 2 tests in 0.049s

FAILED (failures=1)

Create tests
The advantage of using the unittest framework is that it’s very easy to add new tests
at any time. Creating the tests also forces you to think about the behavior of the appli-
cation in detail and ponder what should happen in certain circumstances. The results
of your tests often mean that you then must ask the customer for clarification. For
example, you would have to ask the fashion shop owner, “What is the largest possible

477Program testing

number of items that you ever add to stock at once?” You need this information so
that you can write a test for that behavior.

Once all the initial values of a StockItem have been tested, we can create some code
that tests specific behaviors of the system. The test_StockItem_sell_stock method
below creates a StockItem, adds ten items to stock, checks that ten items were
recorded, sells two items, and makes sure that eight items remain in stock.

def test_StockItem_sell_stock(self):

 item = StockItem(stock_ref='Test', price=10, tags='test:tag')

 self.assertEqual(item.stock_level, 0)

 item.add_stock(10)

 self.assertEqual(item.stock_level, 10)

 item.sell_stock(2)

 self.assertEqual(item.stock_level, 8)

If you consider how long it would take you to perform this transaction by hand, you
can start to see how useful it is to implement automatic testing like this. The unittest
framework includes lots of other features you can explore. You can create methods
to set up and “tear down” test scenarios. You can find out more about the framework
here: https://docs.python.org/3.6/library/unittest.html.

The example FashionShop application in the folder EG12-09 TestFashionShopApp
contains a Python program called RunTests that runs all the tests in the preceding
code block. You might like to add some more tests. For example, you might want to
add a test to make sure that the StockItem raises an exception if a program tries to sell
more items than there are in stock.

Testing should be driven by the specification. In Chapter 7, when we were creating the
user interface for the Theme Park Ride Selector program, we spent some time consid-
ering sensible ways of testing the behavior of the program. You might find it inter-
esting to consider how you would take the tests described in Chapter 7 and perform
them automatically.

PROGRAMMER’S POINT

Tests prove only the existence of faults
Tests are a vital part of professional software development. If you want other people to
use your program, you should make sure that you put some effort into testing it. However,
passing a set of tests doesn’t mean that a program is good. It just means that it passes
the tests. You can never claim that your program is free of bugs just because it passes all
your tests. Automated tests are a very important part of software development, but you
should also make sure that you form the habit of looking through your code (called “code
reviews”) and testing the program with users.

 Create a test StockItem

 Make sure that the initial stock level is 0
 Add 10 items to stock

 Make sure that 10 items are now in stock
 Sell 2 items

 Make sure there are 8 items left in stock

https://docs.python.org/3.6/library/unittest.html

Explore pydoc
The pydoc program is written in Python. The best way to run pydoc is from the command
prompt. We’ll use the Windows PowerShell command prompt to run pydoc in these exam-
ples. The commands are the same on Apple and Linux machines, but you should use the
Terminal to perform this exercise on those operating systems.

The first thing to do is find the folder that contains the sample application for this exercise.
The folder is called EG12-10 TestFashionShopApp Doc. I copied this file onto the desktop of
my machine for the practical work:

MAKE SOMETHING HAPPEN

478 Chapter 12 Python applications

View program documentation
When we began creating functions, we saw that we could add documentation strings
to a function or method. We can also add documentation strings to classes and
modules. These strings must be the first statement in the file. Python provides a tool
called pydoc that can be used to work through modules and classes and extract this
documentation. Pydoc can be used to create a website that allows programmers to
browse the documentation. Let’s look at what we can do with pydoc and the fully
documented FashionShop application.

Now we need to open a PowerShell prompt in this folder. The best way to do this is to click
File in the top left corner and then select Open Windows PowerShell from the window
that appears.

This should cause the PowerShell to open on your desktop:

As its name implies, the PowerShell program is a shell like the Python Command Shell. How-
ever, this shell is wrapped around the Windows operating system rather than around Python.
We can type commands and view responses from Windows. We’ll use the PowerShell to ask
Python to run the pydoc module. Enter the following command:

PS C:\Users\Rob\Desktop\EG12-10 TestFashionShopApp Doc> python -m pydoc

479View program documentation

The Python command is followed by the option -m, which means “execute the following
module.” The module we want to run is pydoc. If we don’t give pydoc any options, it tells us
about itself:

pydoc - the Python documentation tool

pydoc <name> ...

 Show text documentation on something. <name> may be the name of a

 Python keyword, topic, function, module, or package, or a dotted

 reference to a class or function within a module or module in a

 package. If <name> contains a '\', it is used as the path to a

 Python source file to document. If name is 'keywords', 'topics',

 or 'modules', a listing of these things is displayed.

pydoc -k <keyword>

 Search for a keyword in the synopsis lines of all available modules.

pydoc -p <port>

 Start an HTTP server on the given port on the local machine. Port

 number 0 can be used to get an arbitrary unused port.

pydoc -b

 Start an HTTP server on an arbitrary unused port and open a Web browser

 to interactively browse documentation. The -p option can be used with

 the -b option to explicitly specify the server port.

pydoc -w <name> ...

 Write out the HTML documentation for a module to a file in the current

 directory. If <name> contains a '\', it is treated as a filename; if

 it names a directory, documentation is written for all the contents.

We want to use pydoc to create a webpage that we can view. We can use the -b option to do
this. Enter the following command into PowerShell:

PS C:\Users\Rob\Desktop\EG12-10 TestFashionShopApp Doc> python -m pydoc -b

480 Chapter 12 Python applications

This will cause pydoc to start, create a web server on a port on your machine, and then open
your default browser to show you this webpage. On my machine, I get the following display:

You can click on the links to view the documentation for the built-in modules, but the pyhelp
program also searches the current folder for Python modules and programs. Along the bot-
tom of the page, you can see familiar package names from the FashionShop. Click Storage
(package) in the middle of the bottom row to open it.

481View program documentation

Now, you navigate to the contents of this package. If you click StockItem, you can see the
help for that module.

The help strings we created when we wrote the methods are now displayed next to the
method names for the class. You can browse through the FashionShop object (and also the
Python objects) to get help. When finished, close the browser window, go back to the Power-
Shell window, and enter the command q and press Enter to stop the pydoc server.

PS C:\Users\Rob\Desktop\EG12-10 TestFashionShopApp Doc> python -m pydoc -b

Server ready at http://localhost:57591/

Server commands: [b]rowser, [q]uit

server> q

Server stopped

The pydoc program is a good example of a Python program that hosts a website. We’ll do
this ourselves in Chapter 14.

482 Chapter 12 Python applications

483What you have learned

Modules that can run as programs can break pydoc
Earlier in this chapter, in the section “Running a module as a program,” we saw that a module
(a file of Python classes that we want to import into other programs) can contain Python
statements that are executed when the module is loaded. The pydoc program loads all the
modules it finds, which will result in the programs in them being executed within pydoc.

This behavior caused big problems for me when the Fashion Shop started running as the
documentation was being created. In the section “Detect whether a module is executed as
a program,” we saw how code in a module can detect whether it is being run as a program.
Make sure all your program modules contain this test. Otherwise, you might find that your
programs start running when you don’t expect them to. In other words, the program that
runs the Fashion Shop now looks like this:

'''

Starts a Fashion Shop running with a Python Command Shell user interface

Runs only if it is started as the main program

'''

if __name__ == '__main__':

 # Loads a user interface class and a storage manager class

 # and then uses these to create an application

WHAT COULD GO WRONG

What you have learned
This has been a difficult chapter. You learned a lot, but you’ve also transformed the
FashionShop application from a nice piece of sample code into something that could
be the basis of a professional development. You’ve added proper testing and discov-
ered how to add documentation to the application and view that documentation via
your browser.

From a programming perspective, you’ve learned how powerful function references
are, and how you can use these to add flexibility to the code you write. You also
learned about lambda expressions, and how these can be used to generate descrip-
tions of actions that can be passed around as data. As an additional function feature,
you learned the use of the yield statement in a function that allows the function to be
used as the source of an iterator.

484 Chapter 12 Python applications

You also discovered how to create packages of Python modules. These packages allow
multiple programmers to work on different elements in a program solution. You were
also introduced to variables that contain class references. These allow for classes to be
used as components in applications in a very flexible way.

Here are some points to ponder about what we have learned.

Is everything in Python an object?

Yes, it is. Even things that you might not expect to be objects. Everything from an inte-
ger to a class containing many attributes can be treated as an object. Even a function
can be treated as an object to which you can add attributes (although I’d need a very
good reason to do anything that strange). The fact that we can assign anything to a
variable and pass it around might seem scary, but it’s also very powerful.

Problems come when your programs start to combine objects in ways that don’t work.
Perhaps a program will try to call a method attribute on an object that doesn’t have
that attribute. In this case, your program will fail when it runs, which is why testing is
such an important part of Python program development. You must test all possible
behaviors of your program to ensure that all program elements are used correctly.

Should I feel bad if I don’t yet understand things like lambda expressions
and yield?

No. It takes a while to understand the value of language features like these. The Fash-
ion Shop and Time Tracker applications give context for these language features, but
they can still be confusing if you’re just learning to code.

Part of the problem with learning how to use these features is that when you’re
learning how to program you haven’t experienced many situations in which such
features would be useful. It’s a bit like being told how useful gears are on a bike when
you’ve never had to ride a bike up a steep hill. Just keep coming back to those sections
and read them again and again as you write more code. At some point, you’ll dis-
cover a use for one of them, and at that point, you’ll understand what they are used
to accomplish.

What happens when I move Python packages from one computer to another?

Python is a very portable language. I would expect the programs would just work
in their new home. You need to make sure that the version of Python on the new
machine is the correct one, but you shouldn’t have to make any changes to your pro-
gram to accommodate a different host computer.

485What you have learned

When should I write my documentation and tests?

I think you know the answer to this one. The answer is “as you go along.” It’s very
dangerous to work on the basis that you’ll put the documentation in and perform the
tests at the end of the project. The main reason this is a bad idea is that programs have
a habit of taking longer to write than you expect, which means that you’ll probably be
so busy fixing faults and getting the program to work that you might not have time to
document and test it if you leave those tasks to the end.

Creating documentation and tests as you go along (or even before you write the
program itself) dramatically reduces the chances of the program failing. Writing
good tests as you develop your code is an effective way to make sure you have a
good understanding of the specification, and it also means that you are working with
“good” components as you build your solution. I find that I write Python programs
best if I create a very small amount of code at a time between each test. Rather than
writing 500 lines of code and then running it to see what it does (which usually fails
spectacularly), I’ll instead write 50 lines ten times. After each 50 lines, I’ll build some
tests and run them to prove that the code works, and then I move on to the next
50 lines.

I’ve found that very large Python programs that don’t work are extremely difficult to
fix, so I write very short amounts of code at a time.

Part 3
Useful Python

Parts one and two gave you a good foundation in the Python language
and a good understanding of software design. You’ve built some substan-
tial applications, and hopefully you’ve built some of your own programs,
too. You also know about the importance of testing and documentation
and have seen the powerful Python tools that can help you with these tasks.

Now it’s time to move on to the really cool stuff. In this third part, you’ll
learn how to make Python programs that have graphical user interfaces,
talk to the Internet, and work over the network. Then, we’ll round things

off with an exploration of game development in Python.

In this part, the balance of the content changes slightly. There will be a bit
less talking and a lot more doing. Expect to see more “Make Something
Happen” sections as we explore how to build useful applications using
popular Python frameworks. We’ll also have more “Make Something
Happen: Development Challenges” where you can take our example

code and “run with it” to create programs of your own.

13
Python and Graphical

User Interfaces

490 Chapter 13 Python and Graphical User Interfaces

Visual Studio Code
The IDLE program supplied with Visual Studio is a great place to learn how to pro-
gram. However, as we begin to write larger programs, we start to notice that it has
some limitations. If you want to make a program out of several Python source files (as
we’ve begun to do now that we’re using modules), the IDLE experience is not a good
one. You must remember to save all open file windows before you run your program;
otherwise, it might not incorporate all the latest changes to your code.

Visual Studio Code is a free and lightweight program editor from Microsoft. It’s
available for a wide range of operating systems, including Windows, Mac, and Linux.
It’s an open-source project, so you can even take a look inside the Visual Studio Code
program source code and discover exactly how it works. Visual Studio Code is not tied
to working with any specific programming language; it supports plugins that can be
installed within the editor to customize it. We’ll install Visual Studio Code and then use
a very popular Python plugin from open-source contributor Don Jayamanne.

We’ll still use IDLE from time to time, though, as it’s still a great place to use the
Python Command Shell.

Install Visual Studio Code
You can download a copy of Visual Studio Code for your machine from
https://code.visualstudio.com/Download, which you can see in Figure 13-1.

Figure 13-1 Visual Studio Code downloads

https://code.visualstudio.com/Download

491Visual Studio Code

Select the version of the program for your computer by clicking the appropriate but-
ton on the page. Follow the installation instructions to install Visual Studio Code on
your machine.

Install the Python Extension in Visual
Studio Code
Once we have Visual Studio Code installed, we next need to add the Python Extension
that helps us work with Python programs. Open the Visual Studio Code application
and click the Extensions icon indicated by the arrow in Figure 13-2.

Figure 13-2 Extensions selector

Visual Studio Code will now allow you to select extensions, showing you a list of
available extensions. The Python environment we want to use should be near the top
of the list, but if it’s not visible, type Python into the search box at the top as shown
in Figure 13-3. Once you’ve found the correct extension (you want the one by Don
Jayamanne), click the Install button. Now that you have the extension installed, we can
start writing some Python.

492 Chapter 13 Python and Graphical User Interfaces

Figure 13-3 Installing the Python Extension

Create a project folder
Visual Studio Code manages your work in folders. Each folder holds the program files
for a specific project. When you’re working on a project, you have the project’s folder
open in Visual Studio Code. To open the folder explorer view in Visual Studio Code,
click on the folder icon as shown in Figure 13-4.

Figure 13-4 Opening the folder explorer

Visual Studio Code will tell you that you presently have no folders open and invites
you to open one by clicking the Open Folder button shown in Figure 13-5.

493Visual Studio Code

Figure 13-5 The Open Folder button

When you click Open Folder, a dialog appears that you can use to create or select
a folder. Make a new folder called First Project and select it. Note that the precise
dialog you see at this point will depend on which operating system you’re using. Once
you’ve opened the folder, it will appear in the folder explorer in Visual Studio Code,
as shown in Figure 13-6 below.

Figure 13-6 First Project in Visual Studio Code

Create a program file
Currently, the folder is empty. Now, let’s make a Python program. Rest your mouse
cursor over First Project in the Folder Explorer and click the New File icon that appears,
as shown in Figure 13-7.

Figure 13-7 New File in Visual Studio Code

494 Chapter 13 Python and Graphical User Interfaces

Give the new program file the name myprog.py and press Enter. The file will be cre-
ated in the folder and opened for editing, as shown in Figure 13-8.

Figure 13-8 File Editing in Visual Studio Code

Now, type in the following tiny Python program:

name = input('Enter your name please: ')

print('Hello ', name, ' from Visual Studio Code')

As you type the program into Visual Studio Code, you’ll notice some differences in the
way it works compared with the IDLE editor. The editor will suggest Python elements
as you type their names. Simply press Enter to accept the selected suggestion, or use
the arrow keys to scroll down the suggested items to the word you want to select. You
will also find help suggestions on functions that you call. If you move the cursor over
particular words in the text, you’ll find the same words highlighted on the page (which
is very useful for seeing where you’ve used a variable). As you type, you’ll also see a
tiny map of your program appear in the top right corner of the screen. You can use
this map to move rapidly through large files.

Debug a program
Once you’ve typed your program, you’ll want to run it. Press the Debug button on the
left-hand menu, as shown in Figure 13-9 below.

Figure 13-9 Starting Debug in Visual Studio Code

495Visual Studio Code

The screen will now change to Debug mode. The Folder Explorer view changes to
one that will let us see the contents of variables in the program as we run it. Now we
must do some configuration. Visual Studio Code stores some configuration data in
each folder with which you work. This data tells the editor the type of program you’re
working with, and how the editor should behave when working with this project. Cur-
rently, we don’t have any configuration data set for this folder, so we need to create
some. Click on the gears as indicated by the arrow in Figure 13-10 below to open the
configuration file for this folder.

Figure 13-10 Set up Visual Studio Code options

The configuration options are data files in the JSON format. We need to select a spe-
cific set of configuration options for this folder. Open the pull-down menu you see in
Figure 13-11 and select Integrated Terminal/Console from the options that appear.

Figure 13-11 Configure Visual Studio Code options

496 Chapter 13 Python and Graphical User Interfaces

Once you’ve selected your options, close the configuration file by clicking the X near
the file name in the editor, as shown in Figure 13-12 below.

Figure 13-12 Close the configuration file

Now we can debug our program. Click the green arrow you see next to Debug in Fig-
ure 13-11 to start the Debug program. The program window now shows the statement
about to be performed, as you can see in Figure 13-13.

Figure 13-13 Visual Studio Code debugging

At the left, you see all the local variables. Currently, these are the variables set by
Python for a program. The debugger allows you to watch the contents of variables,
which are also shown on the left side. There is also a panel called the Call Stack that
shows you the functions and methods that have been called. At the top of the screen
are controls that let you debug the program, statement by statement, as shown in
Figure 13-14.

Figure 13-14 Run controls

497Visual Studio Code

From left to right, the controls are:

 ● Move Panel (six dots): Click and drag this to move the panel around.

 ● Run/Continue (green triangle): Run the program or continue from a breakpoint.

 ● Step over (Curved arrow over dot): Execute the present statement. If the state-
ment is a method or function call, don’t go into the method or function, just obey
it. This is called “stepping over” a method or function.

 ● Step into (Arrow pointing down): Execute the present statement. If the statement
is a method or function call, enter (or “step into”) the method or function and start
to step through it.

 ● Step out (Arrow pointing up): Complete the present method or function and
“step out” of it.

 ● Restart (Counterclockwise arrow): Restart the program from the beginning.

 ● Stop (Square): Stop the program.

Press the Step Over control (the curved arrow over a dot), which will cause Visual
Studio to perform the statement that calls the input function to read our name. The
program uses the Terminal window at the bottom of the screen, so click that to open
it, allowing you to enter your name, as shown in Figure 13-15 below.

Figure 13-15 Entering your name

Selecting the right Python interpreter
Obviously, you must have Python installed before you try using the Python extension in
Visual Studio Code. However, you might have a problem if your system has multiple versions
of Python installed. You might have installed Python version 3.6 to work through the exam-
ples in this book, but your computer might also have Python 2.7 installed. When the Python
extension for Visual Studio Code is installed, it might pick the wrong version of the program.

You can use the Command Palette in Visual Studio Code to select the command you need to
fix this. Open the Command Palette from the View menu. Then type in:

Python:Select Workspace Interpreter

You won’t need to type all the text, as the palette will find matching commands from which
you can choose. Select the command “Python: Select Workspace Interpreter” and then pick
the Python interpreter with version 3.6.

You can also use this command to select the interpreter to use if you installed Visual Studio
Code before you installed Python on your machine.

WHAT COULD GO WRONG

498 Chapter 13 Python and Graphical User Interfaces

After you’ve entered your name, you are returned to the debugger. If you look at the
Variables display on the left side of the screen, you’ll find that a new variable, name,
has been added to the list. If you press the Run button in the control panel, you’ll see
the program run, and Visual Studio Code will say hello to you.

You might think that we’ve done a lot of work only to slightly improve our working
conditions. However, when you start typing your programs, you’ll find that this text
editor is a huge improvement over the one in IDLE. Visual Studio Code is very good
at suggesting things based on what you’re typing. If you type a variable name in one
part of the program, you’ll find that the name is suggested the next time you start
to type it. There’s a lot to explore in the commands, too. The editor is very good at
various kinds of searching and replacing. It’s very easy to set breakpoints in your pro-
gram. Just click to the left of the statement at which you want your program to pause.
There’s no need to open a special debugging window, as with IDLE.

Visual Studio Code is extremely powerful and customizable, and there are lots more
useful extensions you can add. You can also integrate many Python tools that can be
used to check and test your program.

499Create a Graphical User Interface with Tkinter

Other Python editors
Visual Studio Code is my “weapon of choice” for writing Python. However, here are a
couple other development tools you might like to check out.

Visual Studio 2017 Community Edition
Visual Studio is a heavyweight development tool that’s very popular in the software
development industry. It’s available on both Windows and Mac platforms, but unfor-
tunately, at the time of writing, only the Windows version of Visual Studio supports
Python development. If you have a Windows PC, I strongly suggest that you look into
Visual Studio. The Community Edition is a free download and is extremely powerful.
You can find it at www.visualstudio.com.

Pycharm
Pycharm is not without its charms. It provides a nice place to work, and the Commu-
nity Edition is a free download from www.jetbrains.com/pycharm.

Create a Graphical User
Interface with Tkinter
The mainstay of our interactions with our programs has been the input and print
functions provided with Python, along with the BTCInput module that we created to
read numbers and text. Now we’ll find out how to use Python to create a Graphical
User Interface (GUI). You should already be very familiar with GUIs, as most modern
applications are controlled in this way.

A user interface is what people see when they use your program. A graphical user
interface displays buttons, text fields, labels, and pictures that the user works with to
get their job done. Part of the job of the programmer is to create this “front end” and
then put the appropriate behaviors behind the screen that allow the user to drive the
program and get what they want from it. In this section, we’ll find out how to create a
program that uses a graphical user interface.

It should come as no surprise that a graphical user interface on the screen is repre-
sented by objects. When a program is working with items on the screen, it is calling
methods in the object. For example, if we want to change the text displayed by a label
on the screen, we would call a method on the object that is responsible for that label
and tell it to change the text.

http://www.visualstudio.com
http://www.jetbrains.com/pycharm

Build our first user interface
The best way to find out about Tkinter is to play with it. So, let’s do that. We can do so from the
Python Command Shell in IDLE. So, let’s start that up. The first thing we need to do is import all
the resources from the Tkinter module. Give the following command and press Enter:

>>> from tkinter import *

This form of input is different from others we’ve used recently. It’s a way of using the items in
a module without having to put the module name in front of each item. You can find more
discussion about this in Chapter 7 in the section “Convert our functions into a Python module.”

Now that we’ve imported the module, we can use it. The first thing we’ll do is create a “root”
window, which will act as a container for all the elements on our display. Type the statement
below and press Enter:

>>> root = Tk()

The statement creates a new window on the screen and sets the variable root to refer to the
window. You should notice that a new window has appeared on your desktop. It should look
like the one below.

MAKE SOMETHING HAPPEN

500 Chapter 13 Python and Graphical User Interfaces

We’ll use a module called Tkinter, which is shipped as part of the standard Python dis-
tribution and contains lots of different kinds of objects that represent the objects on
the screen. It’s also a very good example of a class hierarchy, in that particular display
items (for example, buttons, blocks of text, and images) are represented by classes
that are subclasses of parent items. Tkinter is actually a Python interface to a Graphical
User Interface toolkit called Tk. Tk is available for many different hardware platforms
including Windows, Mac, and Linux devices.

Let’s create a new Label and add it to the window. Label items are used to display text in a
window. The user can’t interact with a Label, but a program can change the text on the label
to display results on the screen. Type in the following statement and press Enter.

>>> hello = Label(root, text='hello')

The initializer for a Label takes two parameters. The first is the parent display object, which is
the object within which the Label will be displayed. You can put objects inside objects so that
you can build up complex displays. We won’t do that just yet; instead, we’ll display the Label
in the main window so we can pass in the value of root. The second parameter we’re giving
to the initializer is a keyword argument called text, which is the text that we want the Label
to display.

If you look at the window on the screen, you’ll notice, perhaps to your disappointment, that
the label has not appeared. This is because the graphical user interface doesn’t put anything
on the screen until it knows where to put it.

There are two ways you can position things within a display. You can use a mechanism called
pack, which, as the name implies, packs the elements together in the window. You can
give pack hints such as "LEFT" or "TOP" to tell it to put the item in that part of the display.
However, I suggest that you use a mechanism called grid. This lets you lay out your items in
a grid. This means that you’ll need to plan your screen layout before you write the program,
but a bit of planning is never a bad thing in my experience. We tell our label to use the grid
layout method by calling the grid method on the label. Type in the following statement and
press Enter.

>>> hello.grid(row=0,column=0)

This tells the Label referred to by hello to use the grid layout and to put it at grid location
(0,0). This is the top left corner of the screen. If you look at the display window, you should
notice two things. First, the label is now displayed. Second, you should see that the window
has now been shrunk to fit the label within it.

Let’s add another label. Enter the following two statements:

>>> goodbye = Label(root, text='goodbye')

>>> goodbye.grid(row=1, column=0)

501Create a Graphical User Interface with Tkinter

The display will now contain two labels.

The labels seem to be aligned at the left edge of the window. But the hello text is indented
slightly, as it is centered about the label portion of the window. We can use some settings to
improve this. We can also specify margins around items we display. But that’s for later. For
now, let’s add a button.

Buttons are one way that a user can initiate an action in our programs. The user presses a
button when they want something to happen. So, we need a way of linking a button to some
code in our application. This turns out to be very easy. We create a function, tell the button
the name of the function, and then when the button is clicked the function is called. So,
let’s make a button function. Type the following text and press Enter after each statement,
including the empty line after the print statement.

>>> def been_clicked():

 print('click')

>>>

We now have a function called been_clicked, which we can connect to our button when we
create it. Let’s do that now. Enter the following statement.

>>> btn = Button(root, text='Click me', command=been_clicked)

This creates a Button and sets the variable btn to refer to it. The second argument tells the
Button to call the been_clicked function when the button is clicked. Now, let’s place the button
on the display. Enter the following statement to place the button at the bottom of the display.

>>> btn.grid(row=2, column=0)

502 Chapter 13 Python and Graphical User Interfaces

Now, you’re really going to have to click the button.

>>> btn.grid(row=2, column=0)

>>> click

click

click

I clicked the button three times, as you can see above. Each time you click the button, the
function been_clicked is called. Functions such as been_clicked are called event handlers
because they are executed in response to an external event.

Next, we’ll change the content of one of the labels on the display. Display elements provide a
method called config, which can be used to configure them. We can set the text attribute of
the label by using the config method. Type the statement below and press Enter.

>>> hello.config(text='new hello')

The content of the hello label changes to the new text.

The final thing we’ll do is read some text from a display element, which is how we can read
things entered by the user. If the user is only entering a single line of text, we can use the Entry
component for this. Type in the following statements, pressing Enter after each of them.

>>> ent = Entry(root)

>>> ent.grid(row=3,column=0)

These statements create an Entry item at the bottom of our little program, which is referred
to by a variable called ent. I’ve typed the universal computer greeting hello world into the
text entry area, as you can see below. You can type in whatever text you like.

503Create a Graphical User Interface with Tkinter

Now that we’ve managed to enter some text, the next thing to do is to try to read it from our
program. We can use the get method on our text entry object to do this. Type in the follow-
ing statement. The get method asks an element to return the text it is holding.

>>> print(ent.get())

When you press Enter, the get method runs on the Entry object, and it returns the string
that was typed in. In my case, it shows hello world.

>>> print(ent.get())

hello world

You can type in some more text and read it again, just to prove that it works.

Building a graphical user interface
You might have some questions about the user interface we just created.

Question: What happens if we change the size of the window on the desktop?

Answer: We haven’t given the graphical user interface any special instructions about
what to do if the size of the window is changed, so if we use the mouse to grab hold of
the edges of the window and change its size, we’ll find that we can make the window far
too big, and we can also make it smaller than the components it is displaying. However,
we can set attributes on the window to make it impossible to change its size:

root.resizable(width=False, height=False)

The resizable method on the root display element lets us determine how the user
can change the size of its window on the screen. You can try it now with the window we
created in the previous “Make Something Happen.”

We can also make it possible for the user to resize the window and have the size and
position of components change automatically.

CODE ANALYSIS

504 Chapter 13 Python and Graphical User Interfaces

Question: What happens when I close the window we just created?

Answer: Because we have used the IDLE Command Shell to create the window, the
window will disappear when you close it on the desktop. However, when we create a
program that creates a graphical user interface, we’ll discover a way that our program can
get control when the user closes the window.

Question: Will the window look the same on different machines?

Answer: Mostly. Because the Tk graphical toolkit uses the windowing system of the host
computer to display its output, you’ll find that the window will look like a window on the
host machine.

Question: What happens if an event handler function connected to a button takes a long
time to complete?

Answer: The function connected to a button will run when the button is pressed. The
button will be “stuck down” until the function completes. I actually tested this by creating
a version of been_clicked that contained a call to the sleep function from the time
module that made the function pause for ten seconds. When an event handler is running
in response to one event, all the other controls on the application will be unresponsive.

You should take care to make sure that event handler functions are completed as quickly
as possible. Fortunately, the kind of actions that we’ll perform when buttons are pressed
are not going to cause a problem because they all complete very quickly.

Python supports a mechanism called threading. An application can contain several
threads of execution that execute simultaneously. Each thread could run a different pro-
gram. An application could respond to a button press by starting a new program.

Creating and managing threads is beyond the scope of this book, but if you do want to
perform an action that will take more than a second or so, you should look at how to use
threading to perform the action.

Question: What happens if I place a large amount of text in a label?

Answer: The default behavior (that is, unless we specify otherwise) is for Label to
expand to fit the text inside it. So, the window in the screen would grow to hold this text.

Question: What happens if I put two items in the same cell in the grid?

Answer: The most recently added item will be drawn in preference to the “older” one. In
other words, a new item will “block out” an older one. It’s best not to do this.

Question: Can we update the contents of elements on the screen from within an event
handler function?

Answer: Absolutely. In fact, this is how applications work.

505Create a Graphical User Interface with Tkinter

506 Chapter 13 Python and Graphical User Interfaces

We now know nearly all we need to know to create applications that use a graphical
user interface. The most important thing to remember is that events generated by
the user (for example, clicking on buttons) will end up as calls to functions inside our
application. In the example program above, the function been_clicked will never be
called by any code that we write. It will be called by the button when the user clicks
the button. If we create an application that contains multiple buttons, we can connect
each button to a different event handler. If we have two distinct ways to select a par-
ticular action (perhaps from a button or from a menu), we can connect both display
elements to the same event handler function.

This form of application creation is a bit like “wiring up” electronic devices. We create
a user interface design and then connect each of the user interface components to
an event handler function. Note that events can be generated from actions such as
mouse movements as well as key presses.

Create a graphical application
Now that we know how to create a graphical user interface, we can make our first
application that works this way. This application won’t do much, but it will show
us how to create applications that work via a GUI. It’s a simple adding machine.
Figure 13-16 shows what it will look like. The user will type in two numbers, press the
Add numbers button, and the result will magically appear underneath the button.

Figure 13-16 Adding machine

This application looks deceptively simple, but there’s quite a lot to learn from build-
ing it. Let’s start with the application itself. I’ve created a class called Adder that will
contain the application. The class will contain a method called display that will display
the application:

class Adder(object):

 '''

 Implements an adding machine using a Tkinter GUI

 Call the method display to initiate the display

 '''

507Create a Graphical User Interface with Tkinter

 def display(self):

 '''

 Display the user interface

 Returns when the interface is closed by the user

 '''

In the Adder.py source file, I’ve added some Python code that will run the adding
machine if the Adder.py file is executed as a program:

if __name__ == '__main__':

 app = Adder()

 app.display()

We’ve seen this arrangement of code before. The file can be opened as a module (for
example, by pydoc for producing documentation), but it will only run as a program
if it is the main module. Now we must create the contents of the display method that
will implement our adding machine.

Lay out a grid
We’ll use the grid layout to place the elements in our display area. Figure 13-17 shows
the display with a grid laid over the top to show where each display element will go.
The label “Second Number” is at location row=1 and column=0. Some of the items
(the Add numbers button and the result value) seem to straddle two columns; we will
discover how to do this in the next section.

COLUMN
0 1

RO
W

0

2

3

1

Figure 13-17 Adding machine layout

508 Chapter 13 Python and Graphical User Interfaces

The items that display “First Number,” “Second Number,” and the result (in this case
“4.0”) are all Label elements. We also have a Button to trigger the add numbers
behavior and two Entry items to receive the two numbers that are typed in. Let’s start
positioning components:

first_number_label = Label(root, text='First Number')

first_number_label.grid(sticky=E, padx=5, pady=5, row=0, column=0)

These are the statements that create and position the first number label at the top left
corner of the display. This is in the element at row=0. There are a few extra arguments to
the grid call that we haven’t seen before: sticky, padx, and pady. Let’s look at those.

Use sticky formatting
Quite often, when laying things out in a grid, we’ll find two items of different sizes in
the same column. We can see this above, in that the label “Second Number” is slightly
longer than the label “First Number”. The layout process will always size a row or col-
umn to the largest item in that row or column, which means there will be items placed
in grid cells that are larger than they are. By default (that is, unless we state otherwise),
an item is placed in the center of a larger cell.

For the first_number_label I want the label to be close to the Entry it is labeling. So,
I’ve made the item “sticky” in an “easterly” direction. This means that the label will try
to “stick” to an item on its east side. If I wanted to move the label all the way to the left,
I’d make it sticky toward the west. If I want the item to “stretch” to fill a cell, I can make
it sticky in two directions. This is how I made the “Add numbers” button stretch to fill
the entire width of the display area. We’ll see this later in this section. If you’re not sure
about compass directions, you can find a handy reference in Figure 13-18 below.

Figure 13-18 Compass points

509Create a Graphical User Interface with Tkinter

Use padding
Padding is extra space placed around the component to “pad” it out. Otherwise, the
component will be drawn right up to the edge of the cell in which it is being drawn.
I like to add around 5 pixels or so of padding around items on the screen. You can
specify the amount of padding in the x and y directions. I put 5 pixels around each of
the items on the display in both directions.

Span grid cells
The grid must be two elements wide so that I can display the label and the entry boxes
for both numbers that the user will enter. However, I’d like the button and the result
to be drawn across the full width of the display area. I can do this by merging the cells
into which an element is to be drawn. Look at the definition of the add_button below.

add_button = Button(root, text='Add numbers', command=do_add)

add_button.grid(sticky=E+W, row=2, column=0, columnspan=2, padx=5, pady=5)

The first statement creates the Button instance, sets the text to be displayed on the
button, and tells the button to call the function do_add when the button is clicked.
The second statement places the Button in the grid in row 2, column 0. However, it
also contains the argument columnspan=2. This means that the button will be drawn in
a cell that spans two columns. This case means that the button will be the full width of
the display because the display is two columns wide.

Note also that I’ve made the button “sticky” in both easterly and westerly directions
so that it will be stretched across the entire display when it’s drawn. I use the same
technique to position the result label. Below are all the statements that position and
set up the items on the form.

first_number_label = Label(root, text='First Number')

first_number_label.grid(sticky=E, padx=5, pady=5, row=0, column=0)

first_number_entry = Entry(root, width=10)

first_number_entry.grid(padx=5, pady=5, row=0, column=1)

second_number_label = Label(root, text='Second Number')

second_number_label.grid(sticky=E, padx=5, pady=5, row=1, column=0)

second_number_entry = Entry(root, width=10)

510 Chapter 13 Python and Graphical User Interfaces

second_number_entry.grid(padx=5, pady=5, row=1, column=1)

add_button = Button(root ,text='Add numbers', command=do_add)

add_button.grid(sticky=E+W,row=2, padx=5, pady=5, column=0, columnspan=2)

result_label = Label(root, text='Result')

result_label.grid(sticky=E+W, padx=5, pady=5, row=3, column=0, columnspan=2)

Create an event handler function
We know that we can connect a function to a button so that when the button is
clicked the event handler runs. For the adding machine, the event handler should read
the text out of the two Entry objects into which the user has (hopefully) entered some
numbers. The event handler should then convert the text into numbers, add the two
numbers, and then display the result in the result label. Below you can see my version
of the event handler for the adding machine.

EG13.01 First Adding machine

class Adder(object):

 '''

 Implements an adding machine using a Tkinter GUI

 Call the method display to initiate the display

 '''

 def display(self):

 # create all the screen elements here

 def do_add():

 first_number_text = first_number_entry.get()

 first_number = float(first_number_text)

 second_number_text = second_number_entry.get()

 second_number = float(second_number_text)

 result = first_number + second_number

 result_label.config(text = str(result))

 Method called to generate the user interface

 Event handler for the add button

 Convert the second number text
into a floating-point number

 Calculate the result
 Convert the result into a string

and display it
 Get the text out of the Entry for second number

Convert the first number text into a floating-point number
Get the text out of the Entry for the first number

511Create a Graphical User Interface with Tkinter

Writing an event handler
You might have some questions about the event handler we just created.

Question: Why is the event handler defined inside the display function?

Answer: We’ve seen before that Python will allow programmers to define functions inside
other functions. The event handler function needs access to the result label and the two
Entry variables that the user uses to enter the two numbers to be added. Code running
inside a function has access to the variables in the enclosing namespace (we saw this in
Chapter 7), and so the do_add function can use variables declared in the display function.

I could have created do_add as a method in the Adder class (event handlers can be
methods as well as functions), but then I would’ve had to make all the display elements
attributes of the Adder class so that the do_add method could access them, which would
have meant a bit more typing.

Question: What happens if the user doesn’t type in a valid number before pressing the Add
numbers button?

Answer: Good question. The answer is that the float function in the do_add event han-
dler will be unable to convert the text in the Entry into a floating-point number. It will fail
by raising an exception that will cause the do_add method to be abandoned when the
exception is raised. You might notice the exception being raised if you’re debugging the
program, but when the program is running the user will not see any errors at all.

Entering invalid numbers will not stop the program from running, but the user will not
see an error; they’ll just notice that the result display will not be updated. In an upcom-
ing section, we’ll discover how a program can display a pop-up warning if the user does
something like this.

CODE ANALYSIS

Create a mainloop
When we created a display window from the Python Command Shell in IDLE, we
found that it just worked. This is because the shell was running. If we had exited
the shell program, we’d have found that the display window disappears as well. If a
program just created the display components and then ended, we’d find that the
interface would flash up on the screen for a fraction of a second and then vanish when
the program ended. To keep the display active, the Tkinter module provides a method
called mainloop which a program should call once it has set up its display components:

root.mainloop()

512 Chapter 13 Python and Graphical User Interfaces

The name mainloop describes what this method does. It repeatedly fetches events and
sends them on to functions that have been created to deal with the events. When the
user closes the window on the screen (in Windows 10, they would click the X in the top
right corner of the window), the mainloop method ends. As the mainloop method is
frequently the last method call in a program that uses a graphical user interface when
mainloop ends the program probably ends, too.

You can find a complete implementation of the adder program in the example file
EG13-01 First Adding machine in the downloadable sample files for this chapter.

Handle errors in a graphical user interface
The adding machine we’ve created works quite well. However, it does have problems if
the user enters invalid text rather than numbers. Figure 13-19 shows what can happen.
The user has typed in two text strings. When they press the Add numbers button, the
result display is not updated because the do_add event handler fails with an exception.

Figure 13-19 Text as numbers

One way to deal with this would be to catch the exceptions and change the result
string to reflect the issue. We saw how to catch exceptions in Chapter 6. The code
below is part of an improved do_add function that catches exceptions if either of
the number conversions performed by the float method fail.

EG13-02 Exception handler with messages

def do_add():

 first_number_text = first_number_entry.get()

 try:

 first_number = float(first_number_text)

 except ValueError:

 result_label.config(text='Invalid first number')

 return

 second_number_text = second_number_entry.get()

 Get the number text from the Entry on the screen

 Start of exception handler
 Statement that might throw an exception

 Handler for ValueError exceptions
 Set the result to indicate

that an error has occurred

 Return from the method if the first number is not valid

513Create a Graphical User Interface with Tkinter

 try:

 second_number = float(second_number_text)

 except ValueError:

 result_label.config(text='Invalid second number')

 return

The code above works well, but it is not perfect. If the user enters invalid text in both
Entry objects on the screen, the program will only tell the user about the first error,
not the second. We can improve this code so that it builds an error string and displays
it if any errors are detected:

def do_add():

 error_message = ''

 first_number_text = first_number_entry.get()

 try:

 first_number = float(first_number_text)

 except ValueError:

 error_message = 'Invalid first number\n'

 second_number_text = second_number_entry.get()

 try:

 second_number = float(second_number_text)

 except ValueError:

 error_message = error_message + 'Invalid second number'

 if error_message != '':

 result_label.config(text=error_message)

 else:

 result = first_number + second_number

 result_label.config(text = str(result))

 Start of the try construction
 Try to convert the first string into a number

 Exception handler for a failed conversion from text to a float
 Add an error message

 Start of the try construction

 Exception handler for a failed conversion from text to a float
 Add an error message

 Is the error message empty?
 Display the error message if it is not empty

 If we get here, there are no
errors – work out the result

 Get the text from the Entry for the first value
 Create an empty error message string

 Get the text from the Entry for the second value

 Try to convert the second string into a number

 Display the calculated result

This version of the do_add function is much better. It uses a technique I’ve used many
times when dealing with user errors. It starts with an empty error string. Each time code in
the function finds something wrong, it will add text describing the error to the error string.
If at the end of the function, the error string is empty, it means that there are no errors
and the function can complete. Otherwise, it displays the error message. You can find this
version of the error handler in the sample file EG13-03 Adder with sensible messages.

514 Chapter 13 Python and Graphical User Interfaces

There is considerable scope for making this method even better. Tkinter provides
methods to set the foreground and background colors of items on the screen, so
you could make the do_add function indicate invalid user entries by changing the
background color of invalid entries to red. The statement below shows how you can
change the color of an item in the program. It configures first_number_entry so that
the background of the Entry on the screen is red and the foreground (the color of the
text in the entry box) is blue.

first_number_entry.config(background='red', foreground='blue')

Display a message box
Another way to inform the user of an error is to pop up a message box. This technique
has the advantage that the user must see and acknowledge the error before they can
continue. Tkinter provides a message box, and it’s very easy to use. The first thing the
program must do is import the messagebox module:

from tkinter import messagebox

The messagebox module contains three functions that can display messages:
showinfo, showwarning, and showerror. All the message boxes have the same format,
but a different icon is used for each. The user interface for the program displaying the
message (in our case, the Adder program) will be locked until the user clears the error
message by clicking OK or closing the message box. Each of the message functions
accepts two arguments, a title and a message. Both are strings. Below we can see how
we could use the showinfo function to show some information:

messagebox.showinfo('Rob Miles', 'Turns out Rob Miles is awesome')

Figure 13-20 shows the output of this important message. To display a warning, use
the showwarning method. To display an error, use the showerror method. You can
find a version of the Adder program that displays a message box to indicate user error
in the sample file EG13-04 Adder with message box

Figure 13-20 Important message from showinfo

Fahrenheit to centigrade. And back.
In this challenge, I’ll give you a half-finished program to complete. This is something that
happens surprisingly frequently in the software industry. When you get your first program-
ming job, it’s likely that you’ll start by modifying an existing program rather than being asked
to create an all-new program. The program you’re working on is the ultimate temperature
converter. The user can convert from Fahrenheit to centigrade or back. They type their
conversion value into one box and, depending on which button they press, the other box will
show the converted value. The program is supposed to look like this:

Unfortunately, the programmer hired to create the program has taken his job much too seri-
ously, and has gone away to Hawaii, supposedly to test the program in higher temperatures.
He has left behind a program that looks like this:

MAKE SOMETHING HAPPEN

515Create a Graphical User Interface with Tkinter

We can make a version of the Adder program that displays a message box by replac-
ing the statement that sets the result label to the error with one that generates a mes-
sage box. The code below shows the part of do_add that handles errors. If the error
message is not empty (in other words, something bad has happened), the message
box will be displayed to indicate this.

if error_message != '':

 messagebox.showerror(title='Adder',message=error_message)

 Is the error message empty?
 Display an error

message box

'''

Display a graphical user interface that lets users convert from temperature scales

'''

from tkinter import *

class Converter(object):

 '''

 Displays a Tkinter user interface to convert between Fahrenheit and centigrade

 Call the display function to display the converter on the screen

 '''

 def display(self):

 '''

 Displays the converter window

 When the window is closed, this method completes

 '''

 root = Tk()

 cent_label = Label(root, text='Centigrade:')

 cent_label.grid(row=0, column=0, padx=5, pady=5, stick=E)

 cent_entry = Entry(root, width=5)

 cent_entry.grid(row=0, column=1, padx=5, pady=5)

 fah_entry = Entry(root, width=5)

 fah_entry.grid(row=2, column=1, padx=5, pady=5)

 def fah_to_cent():

 '''

 Convert from Fahrenheit to centigrade and display the result

 '''

 fah_string = fah_entry.get()

 fah_float = float(fah_string)

 result = (fah_float - 32) / 1.89

 cent_entry.delete(0, END) # remove the old text

 cent_entry.insert(0, str(result)) # insert the new text

 def cent_to_fah():

 '''

 Convert from centigrade to Fahrenheit and display the result

 '''

516 Chapter 13 Python and Graphical User Interfaces

 cent_string = cent_entry.get()

 cent_float = float(cent_string)

 result = cent_float * 1.8 + 32

 fah_to_cent_button = Button(root, text='Fah to cent', command=fah_to_cent)

 fah_to_cent_button.grid(row=1, column=0, padx=5, pady=5)

 root.mainloop()

if __name__ == '__main__':

 app = Converter()

 app.display()

The programmer has used a feature of Tkinter that we haven’t seen before. When the pro-
gram has calculated a new result, it must display it in a text entry field. Updating the text in
an Entry is slightly more complicated than just changing the text in a Label. There are very
powerful editing features available, but we just want to replace the text with new text. The
two statements below show how this is done. The first statement deletes all the text from
cent_entry. The first argument to the delete method is the position to start deleting (0
means the beginning of the string). The second argument to the delete method is the posi-
tion to stop deleting. The variable END is declared in the Tkinter module and means “the end
of the line.”

The second statement inserts a string containing the result into cent_entry starting at the
location 0 (the beginning of the string).

cent_entry.delete(0, END) # remove the old text

cent_entry.insert(0, str(result)) # insert the new text

You can find the starter code in the folder EG13-05 TemperatureConverter Starter in the
sample code for this chapter. The folder is all set up for use with Visual Studio Code. If you
want to “skip to the end,” you can find a complete version of the program in the folder EG13-
06 TemperatureConverter Complete. However, even the complete version could use some
attention; currently, it doesn’t handle invalid inputs.

You can use this program as the basis for any conversion you like, such as ounces to grams,
mph to kph, or dollars to euros.

517Create a Graphical User Interface with Tkinter

Investigate events and drawing
We can investigate Tkinter events from the Python Command Shell in IDLE. So, let’s start that
up. As before, the first thing we need to do is import all the resources from the Tkinter mod-
ule. Give the following command and press Enter:

>>> from tkinter import *

Next, we need to create a window on the screen. Enter the following statement and
press Enter:

>>> root = Tk()

Now we’ll create a Canvas. A Canvas is a display component that can act as a container for
lots of other display elements. We can draw and position these elements inside the canvas.
When you create a Canvas, you can tell the graphical user interface the size of the Canvas in
pixels. Enter the following statement to create a Canvas that is 500 pixels square.

>>> c = Canvas(root, width=500, height=500)

To get the Canvas displayed, we need to specify where to place it. It will be the only item on
the display, so we can place it at row 0 and column 0.

>>> c.grid(row=0, column=0)

MAKE SOMETHING HAPPEN

518 Chapter 13 Python and Graphical User Interfaces

Draw on a Canvas
We can also use graphical interfaces to allow the user to draw with the mouse on the
screen. We do this by creating a drawing area that sends our program an event each
time the user moves their mouse. If this event performs a drawing operation, we have an
instant drawing program. Let’s look at how we can get events from areas of the screen.

If you look at the window that’s been created, you should see that the program is now dis-
playing a square window.

Now we need to connect a function to the events that Tkinter generates when a mouse is
moved over the Canvas. Let’s write the function first. Enter the following function. Enter a
blank line after the print statement to end the function.

>>> def mouse_move(event):

 print(event.x,event.y)

>>>

The function is supplied with a single parameter, which is a reference to an event object. This
object has two attributes, which are the x and y positions of the mouse pointer at the time the
event occurred. The method above just prints these positions on the screen.

Now we need to connect this function to the event generated when the mouse is moved with
a button pressed. This will give us the movement detection that will make our drawing pro-
gram work, which is called binding the function to the event. Objects on the display provide a
bind method that programs can use to connect functions to events. Each event has a unique
name. Type in the following statement and press Enter. The statement calls the bind method
on the canvas and links the <B1-Motion> event (that is, mouse motion with button 1 pressed
down) to the function mouse_move. Each time the Canvas detects a mouse movement with
the button pressed, it will call the method.

519Create a Graphical User Interface with Tkinter

The bind method returns a string that describes the binding that has taken place. A program
could use this string to identify the binding and disconnect the connection later, but we can
ignore this string for now. Note that because the description string is supposed to be unique
on a specific machine, you may find that the string displayed on your machine differs from
the one shown below.

>>> c.bind('<B1-Motion>', mouse_move)

'2886099647752mouse_move'

>>>

Now for the fun bit. Move your mouse to the window displaying the canvas, hold down the
left (or only) button on the mouse and drag it. Watch the Python Command Shell in IDLE. You
should see a stream of numbers being generated. Below you can see some of the numbers
that I saw. If you drag the mouse up to the top left corner of the canvas, you should see the
numbers getting smaller. This is because the origin of the coordinates (the point 0,0) is the
top left corner of the canvas. This should not come as a surprise; it is the same way that the
grids are numbered.

>>> 283 277

290 297

290 306

289 307

Printing coordinates is nice enough, but we are making a drawing program, and we need
to draw a dot. The Canvas object provides a method called create_rectangle that should
do the trick. Tear yourself away from dragging the mouse around your canvas and enter the
following statement. This will draw a blue rectangle. The top left corner of the rectangle will
be at coordinate (100,100). The bottom right corner of the rectangle will be at coordinate
(300,200). The outline argument sets the color of the outline of the rectangle; the fill
argument sets the color used to fill in the block. Unless you specify otherwise, the outline
color will be black.

>>> c.create_rectangle(100,100,300,200,outline='blue',fill='blue')

1

>>>

If you look at the output window for your program, you should see that a blue rectangle has
duly appeared.

520 Chapter 13 Python and Graphical User Interfaces

You may be wondering why the value 1 was displayed when we created the blue rectangle. This
is because when you create an object on a canvas, the method that creates it will return a value
that identifies this object. If we just call a method, Python will just display the value returned by
it, which in this case was 1 because we have just created object number 1 on the Canvas.

A canvas manages each object by its number. We can ask the canvas to remove an object
from the display by using the delete method. Type the following command and press Enter.

>>> c.delete(1)

You should see the blue rectangle disappear. This is a very powerful feature of the Canvas.
Every single element on the screen is a separate object that we can find and manipulate after
we’ve drawn it.

Now we need to use the drawing method to allow us to draw with the mouse. We can create
a new function that draws a block at the position a mouse event was detected. Enter the
statements below. Add an empty line after the call of create_rectangle to end the func-
tion definition.

>>> def mouse_move_draw(event):

 c.create_rectangle(event.x-5,event.y-5,event.x+5,event.y+5,

 fill='red', outline='red')

>>>

521Create a Graphical User Interface with Tkinter

This method creates two points that define the rectangle to be drawn. The first point is five
pixels to the left and above the mouse position, the second point is five pixels to the right and
below the mouse position. The result is that the function will draw a ten-pixel square block
centered around the position of the mouse. Now, all we need to do is bind this new draw
function to the event generated when the mouse is moved with the pointer held down.

>>> c.bind('<B1-Motion>', mouse_move_draw)

'2886099651528mouse_move_draw'

Once you have bound the function to the event, you should be able to draw on the canvas by
clicking the left mouse button and dragging it over the canvas.

Above, you can see my not very artistic attempts at drawing. You can almost certainly do bet-
ter. You should also notice that the program no longer prints the mouse position in the IDLE
output window, which is because only one function can be bound to a particular event.

Tkinter events
Tkinter events are very powerful and flexible. Let’s look at the event we’ve been using
for drawing. Below is the statement we used to link the mouse_move function to the
event where the mouse is moved with a button held down.

c.bind('<B1-Motion>', mouse_move)

522 Chapter 13 Python and Graphical User Interfaces

523Create a Graphical User Interface with Tkinter

The event identifier is the string '<B1-Motion>'. We can break this string down into
two components. The first part is called the modifier. You can think of this as a condi-
tion that must be satisfied for the event to be generated. In our case, the condition is
that mouse button 1 is pressed. The second part is called the detail. This is the thing
that will produce the events. If we left the modifier off, and just bound a handler to an
event identified by the string '<Motion>' we would get events produced every time
the mouse was moved, which is more events than we really want. Here are a few of the
most useful events and modifiers:

MODIFIER ACTION DETAIL ACTION

Control Control key pressed Motion Mouse moved

Shift Shift key pressed ButtonPress Mouse button pressed

B1 – B4 Corresponding mouse
button pressed ButtonRelease Mouse button released

KeyPress Key pressed

KeyRelease Key released

MouseWheel Mouse wheel moved

Note that the different actions may deliver different event information when their
action is called. In other words, the events delivered when a key is pressed contain the
key information, rather than mouse coordinates. You can create more complex events
if you wish with multiple modifiers.

Create a drawing program
We can use events to create a simple drawing program. The user can draw with the
mouse and select colors with the keyboard. They can also clear the canvas and start
a new drawing.

'''

Provides a simple drawing app

Hold down the left button to draw

Provides some single key commands:

R-red G-green B-blue

C-clear

'''

from tkinter import *

524 Chapter 13 Python and Graphical User Interfaces

class Drawing(object):

 def display(self):

 root = Tk()

 canvas = Canvas(root, width=500, height=500)

 canvas.grid(row=0, column=0)

 draw_color = 'red'

 def mouse_move(event):

 '''

 Draws a 10-pixel rectangle centered about the mouse

 position

 '''

 canvas.create_rectangle(event.x-5, event.y-5,

 event.x+5, event.y+5, fill=draw_color, outline=draw_color)

 canvas.bind('<B1-Motion>', mouse_move)

 def key_press(event):

 nonlocal draw_color

 ch = event.char.upper()

 if ch == 'C':

 canvas.delete('all')

 elif ch == 'R':

 draw_color = 'red'

 elif ch == 'G':

 draw_color = 'green'

 elif ch == 'B':

 draw_color = 'blue'

 canvas.bind('<KeyPress>', key_press)

 canvas.focus_set()

 root.mainloop()

if __name__ == '__main__':

 app = Drawing()

 app.display()

 Create the display root

 Create the canvas to draw on
 Position the canvas in the display

 Set the draw color to red

 Event handler for the mouse movement

 Bind the event handler to the mouse
movement

 Make sure we use the draw_color in the enclosing namespace
 Get the character pressed and convert it into uppercase

 Is the character a C?
 Delete all the objects on the canvas

 Is the character an R?
 Set the draw color to red

 Is the character a G?
 Set the draw color to green

 Is the character a B?
 Set the draw color to blue

 Bind the event handler for keypresses
 Set the keyboard focus to the canvas

 Main loop for Tkinter

 Are we being run as a program?
 Create a drawing instance

 Start the display on the drawing

Drawing on a canvas
In the above program, I’ve used some features of Python that you haven’t seen before. You
might have some questions about the program.

Question: What is the draw_color variable used for?

Answer: As its name implies, the draw_color variable holds the color to be used for
draw actions. The Tkinter system can recognize a large range of colors by name. You can
find a chart giving all the available colors here: http://wiki.tcl.tk/37701.

If you want to specify your own colors, you can do so by giving a string that contains
three two-digit hexadecimal values, one each for the amount of red, green, and blue,
respectively.

draw_color = '#FFFF00'

This would set the draw color to yellow (all the red, all the green and none of the blue).

In the program, the draw color is set to red when the program starts and then changes
when the user presses the R, G, or B keys.

Question: How do you clear the canvas?

Answer: We saw above that we can delete items we’ve drawn if we know their ID. The
drawing program above doesn’t store the ID values of the items it draws (although it
could). The delete method can be given with the argument 'all' if you want your pro-
gram to delete everything that’s been drawn. This has the effect of clearing the display.

canvas.delete('all')

 The statement above is obeyed when the user presses C.

Question: In the key_press function, you’ve created a “nonlocal” variable called
draw_color.

def key_press(event):

 nonlocal draw_color

What does this mean?

CODE ANALYSIS

525Create a Graphical User Interface with Tkinter

http://wiki.tcl.tk/37701

Answer: The key_press function needs to be able to change the value of the
draw_color variable when the user presses a key to select a different drawing color.
The variable draw_color is declared in the function that contains the key_press function.
In Chapter 7, in the section “Global variables in Python programs,” we saw how a function
could access variables that were not created within the function by telling Python that the
variable is “global.” However, the variable draw_color is not global (global variables are
declared outside any function); it just isn’t local to the key_press function. The nonlocal
statement is used in this situation. In other words, saying that a variable is nonlocal means
“I’d like to use the variable with this name from an enclosing namespace please.”

Question: What does the call of focus_set do?

Answer: When you move the mouse pointer over a specific item on the screen, Python
knows that the item is the one that should receive any motion events. However, when the
user presses a key on the keyboard, Python has no way of knowing which component in
the application is supposed to receive a message.

The focus_set method lets a component say, “Please give me all the keyboard events.”
Note that this action is independent of what the user is doing. The user may have
selected (given focus to) the window containing your Python program, but keyboard
events will only be passed to a component if it has acquired focus using this method.

526 Chapter 13 Python and Graphical User Interfaces

Make the drawing program draw ovals
In this development challenge, you’ll have to do some detective work to find out how some of
the Tkinter functions work. The Canvas object provides a method called create_oval, which
can be used to draw ovals. It has a different set of arguments from the create_rectangle
method. Find out what the arguments are and make a version of the drawing program you can
find in the sample folder EG13-07 Drawing program that draws ovals. You could even allow
the artist to swap between brushes by pressing S for a square brush and O for an oval brush.

MAKE SOMETHING HAPPEN

Enter multi-line text
We’ve seen that you can use a Tkinter Entry object to allow the user to enter a single
line of text into the user interface, but this would not be useable if we wanted to cre-
ate a text editor. The Tkinter framework provides an object called Text that allows a
user to enter pages of text. It works in a very similar way to the Entry object, but there
are some differences.

Investigate the Text object
We can investigate the Text object from the Python Command Shell in IDLE. So, let’s start
that up. As usual, the first thing we need to do is import all the resources from the Tkinter
module. Give the following command and press Enter:

>>> from tkinter import *

Next, we need to create a Tkinter window on the screen. Enter the statement below to create
a new window and set the variable root to refer to it.

>>> root = Tk()

Now we’ll create a Text object. Type the following statement and press Enter.

>>> t = Text(width=80, height=10)

The statement above creates a Text object and sets the variable t to refer to it. If the width
and height values seem a bit smaller than we are used to (our drawing screen was 500 pixels
in size), this is because the width of the text area is given in characters and the height is given
in lines. As usual, the object will not be drawn until we’ve told Tkinter how to position it on
the screen. Enter the following statement and press Enter.

>>> t.grid(row=0, column=0)

The screenshot above shows the Text component in action. I’ve typed in a couple of lines.
You should do the same.

MAKE SOMETHING HAPPEN

527Create a Graphical User Interface with Tkinter

The Text object allows a Python program a lot of control over the contents of the text win-
dow. For now, we just want to be able to read text back from a Text object. We can do this in
a similar fashion to how we got text from the Entry object earlier in this chapter. However,
we must work a little harder to address the text area that we want to read because we can
refer to characters in the text in terms of their row and column positions. Enter the following
statement and press Enter.

>>> t.get('1.0',END)

'First line of text\nSecond line of text\nThird line of text\n'

This statement gets all the text out of the Text object, starting at row 1 (the first row of the
text), column 0 (the first column of the text). The value END specifies the end of the text, but
you can specify a position in the text for the endpoint if you wish. If you just want to read the
second line of text, you could use the following:

>>> t.get('2.0', '3.0')

'Second line of text\n'

We can use the delete method to delete portions of text from the Text object. Enter the
following statement and press Enter to clear the text display.

>>> t.delete('1.0', END)

We can add text by stating the start position and then giving the text to be added. Enter the
following statement to do just this:

>>> t.insert('1.0', 'New line 1\nNew line 2')

This inserts text into the Text area, starting at the beginning of the area. Note that the new
line character '\n' is used to split lines on the display.

528 Chapter 13 Python and Graphical User Interfaces

Group display elements in frames
A grid provides a way for you to design a layout for a complete window on the screen,
but you often want to lay out subcomponents that you want to add to the window.
We can do this by using a Frame. A Frame can act as a root for a set of elements dis-
played within it. We could use a frame to create a layout for the editing of a StockItem
from our Fashion Shop application. Once we’ve created the Frame object, we can then
include this in other display elements.

529Create a Graphical User Interface with Tkinter

Using frames is very easy. We simply create the frame and then use the frame as the
root object for all the items to be displayed within it:

frame = Frame(root)

stock_ref_label = Label(frame, text='Stock ref:')

stock_ref_label.grid(sticky=E, row=0, column=0, padx=5, pady=5)

The stock_ref_label is now part of the frame and will be positioned in the top left
corner of the frame. Frames work well if you want to display the same information in
several different applications.

Create an editable StockItem using a GUI
Now we can put these elements together to create an editable StockItem for use in
a version of the Fashion Shop application that uses a graphical user interface. We’ll
create an object that will support the following three behaviors:

 ● Clear the editor display

 ● Put a StockItem on display for the user to edit

 ● Load a StockItem from the display after editing

We can call this object StockItemEditor, and it will contain methods for each of the
behaviors above. Below, you can find an “empty” implementation of the class. It con-
tains methods that currently just contain the empty statement pass. Next, we’ll fill in
these methods.

class StockItemEditor(object):

 '''

 Provides an editor for a StockItem

 The frame property gives the Tkinter frame

 that is used to display the editor

 '''

 def __init__(self,root):

 '''

 Create an instance of the editor. root provides

 the Tkinter root frame for the editor

 '''

 pass

 Create a new frame
 Add a label to the frame

 Place the label in a
grid inside the frame

530 Chapter 13 Python and Graphical User Interfaces

 def clear_editor(self):

 '''

 Clears the editor window

 '''

 pass

 def load_into_editor(self, item):

 '''

 Loads a StockItem into the editor display

 item is a reference to the StockItem

 being loaded into the display

 '''

 pass

 def get_from_editor(self,item):

 '''

 Gets updated values from the screen

 item is a reference to the StockItem

 that will get the updated values

 Will raise an exception if the price entry

 cannot be converted into a number

 '''

 pass

We can create the initializer first. This is the method that sets up the object. It must
create all the display objects and add them to the frame. Note that we don’t create the
editor when we want to edit a StockItem; we create it when the program starts. The
editor provides the place where StockItems will be loaded to be edited.

class StockItemEditor(object):

 def __init__(self,root):

 self.frame = Frame(root)

 stock_ref_label = Label(self.frame, text='Stock ref:')

 stock_ref_label.grid(sticky=E, row=0, column=0, padx=5, pady=5)

 self._stock_ref_entry = Entry(self.frame, width=30)

 self._stock_ref_entry.grid(sticky=W, row=0, column=1, padx=5, pady=5)

 price_label = Label(self.frame, text='Price:')

 price_label.grid(sticky=E, row=1, column=0, padx=5, pady=5)

 self._price_entry = Entry(self.frame, width=30)

 Pass the constructor the root of the display for the frame
 Create the frame to hold the editor

 Stock reference editor

Creating a StockItemEditor
There are no new features being used in this initializer, but you might have some questions.

Question: Why do only some of the display elements have the self in front of them?

Answer: This is because not all the items on the display will be used after the display has
been created. Consider the following:

stock_ref_label = Label(self.frame, text='Stock ref:')

stock_ref_label.grid(sticky=E, row=0, column=0, padx=5, pady=5)

self._stock_ref_entry = Entry(self.frame, width=30)

self._stock_ref_entry.grid(sticky=W, row=0, column=1, padx=5, pady=5)

These are the screen objects that provide access to the stock reference. The first object is
the Label that appears on the display next to the item. The second is the Entry object
that is used to display and enter the stock reference information. The object doesn’t need
to use the label once it has been created, so there’s no point in making it an attribute of
the class. The program simply uses a variable that will be local to the __init__ method
and discarded when the method ends.

CODE ANALYSIS

531Create a Graphical User Interface with Tkinter

 self._price_entry.grid(sticky=W, row=1, column=1, padx=5, pady=5)

 self._stock_level_label = Label(self.frame,text='Stock level: 0')

 self._stock_level_label.grid(row=2, column=0, columnspan=2, padx=5, pady=5)

 tags_label = Label(self.frame,text='Tags:')

 tags_label.grid(sticky=E+N, row=3, column=0, padx=5, pady=5)

 self._tags_text = Text(self.frame, width=50, height=5)

 self._tags_text.grid(row=3, column=1, padx=5, pady=5)

In our application, we will create a new StockItemEditor and place it on the screen
as follows:

from tkinter import *

root = Tk()

stock_frame = StockItemEditor(root)

stock_frame.frame.grid(row=0, column=0)

 Price editor

 Stock level display

 Tags editor

 Import the Tkinter library

 Create the root display

 Create the StockItemEditor
 Place the frame from the StockItemEditor

on the display

However, the Entry object will be changed when we display a StockItem, and
so it must be stored as an attribute so that it can be used by other methods in the
StockItemEditor class.

Question: What is the frame attribute of the StockItemEditor class used for?

Answer: The StockItemEditor class creates a frame that contains the objects that
perform the editing. The program creating the display needs to have access to this frame
so that it can be positioned on the display. So, the StockItemEditor class provides an
attribute, called frame, that provides this value. You can see it used in the statement that
positions the StockItemEditor on the display:

stock_frame.frame.grid(row=0, column=0)

The variable stock_frame refers to the StockItemEditor that’s just been created. The
statement above gets the frame attribute out of this object and calls the grid method on the
frame to position the StockItemEditor at row 0 and column 0 on the display.

532 Chapter 13 Python and Graphical User Interfaces

Now we can look at the method that will clear the display. We will use this in two situa-
tions: when we are loading a new element for editing (to get rid of any text that might
be there) and when we have finished editing.

def clear_editor(self):

 '''

 Clears the editor window

 '''

 self._stock_ref_entry.delete(0, END)

 self._price_entry.delete(0, END)

 self._tags_text.delete('0.0', END)

 self._stock_level_label.config(text = 'Stock level : 0')

This method just clears all display items and changes the text on the stock level label
to indicate that there are no items in stock. The next method we can examine in the
StockItemEditor is the one that takes a StockItem and makes it available for editing.
The values in the StockItem must be copied onto the editing objects. I’ve called the
method load_into_editor.

The load_into_editor method
You might have some questions about load_into_editor.

Question: For what is this method used?

Answer: We will call this method when the user has selected a StockItem that they want
to edit. In the Command Shell version of the program, we would use the print function
to ask the user to give new values and the input function to read them back. We did this
in Chapter 9 in the section “Editing a contact” for our contacts store.

An editor that uses a graphical user interface must work differently. It must display the
StockItem and then allow the user to edit it. You use this way of working every time you
edit a document using a word processor. The word processor loads the document, lets
you edit it, and then saves the document. We have just written the load behavior for our
“StockItem processor.”

Question: Why are some of the items converted to a string before editing?

Answer: The price of an item is held as an integer. We need to convert the integer into a
string so that the user can edit it. When we get the items back from the editor, we’ll have
to convert them from a string back into an integer.

CODE ANALYSIS

533Create a Graphical User Interface with Tkinter

def load_into_editor(self, item):

 clear_editor()

 self._stock_ref_entry.insert(0, item.stock_ref)

 self._price_entry.insert(0, str(item.price))

 self._stock_level_label.config(text = 'Stock level : ' + str(item.stock_level))

 self._tags_text.insert('0.0', item.text_tags)

We can get a StockItem object ready for editing by calling this method and passing
the stockitem into it. The listing below does just that. Note that this is just test code;
in the finished application, the item to be edited will be one of the items in the stock
of the shop.

item = StockItem(stock_ref='D001', price=120,

 tags='dress,color:red,loc:shop

window,pattern:swirly,size:12,evening,long')

stock_frame.load_into_editor(item)

 item is a reference to the stock item being edited
 Clear the editor

 Insert the stock reference
from the stock item

Convert the price value into a string and display it
 Display the stock level as a label

 Display the list of tags as a text string

 Create a test StockItem

 Send the StockItem to
the edit frame

Question: What is the text_tags attribute of a StockItem?

Answer: The StockItem holds a set of tags that are used by the fashion shop owner to
locate stock items with which she wants to work. The text_tags attribute is a property
that converts this set of tags into a string of text that can be displayed and edited. There’s
nothing special about the code that implements the property; it’s a variant of the code
we used in Chapter 10 when we converted a list of Session objects into a text report. Look
in the section “The Python join method” for more details.

The get_from_editor method
You might have some questions about get_from_editor.

Question: What is the purpose of this method?

Answer: This is the method that takes the edited StockItem details and puts them back
into a StockItem. You can think of this as the Fashion Shop equivalent of the code that
takes your edited text and stores it when you press Save in a word processor.

CODE ANALYSIS

534 Chapter 13 Python and Graphical User Interfaces

The next method we need is the one that fetches an edited StockItem from the frame.
The method is called get_from_editor and is used to complete the editing of a
StockItem. This will happen when the user presses a Save button on the user interface.
You can think of this method as the reverse of load_into_editor.

def get_from_editor(self,item):

 item.set_price(int(self._price_entry.get()))

 item.stock_ref = self._stock_ref_entry.get()

 item.text_tags = self._tags_text.get('1.0',END)

This code will run when the user presses a button to indicate that they’ve finished
editing. The code below shows the save_edit function and a button that can be
pressed to save the edited StockItem.

def save_edit():

 stock_frame.get_from_editor(item)

 stock_frame.clear_editor()

save_button = Button(root, text='Save', command=save_edit)

save_button.grid(row=1, column=0)

 Convert the price string
into an int and store it

 Put the stock reference
back into the stock item

 Set the tags to the
edited string

 Called to save the edited stock item
 Get the stock item from the editor

 Clear the editor

Question: Can this method fail?

Answer: Yes, it can. If the user doesn’t enter a valid number into the price Entry, it
will not be possible for the number to be converted, and the save method will raise an
exception. A user of this method would have to take this into account when they write
their program. Otherwise, there is the danger that the fashion shop owner might be left
thinking that a save had succeeded when it had failed.

535Create a Graphical User Interface with Tkinter

We can use the load_into_editor, get_from_editor and clear_editor methods to
create a test editor for StockItems. The user interface will appear as in Figure 13-21.

Figure 13-21 Editing a stockitem

The program below creates a test StockItem and allows the user to edit it. The user
can finish the edit by pressing the Save button. When Save is pressed, the updated
values are loaded from the edit window, and then the updated StockItem is printed.
Finally, the edit window is cleared. This version is very basic (it doesn’t do any check-
ing for errors), but it does show how well this works. You can find the example in the
folder EG13-08 StockEditDemo in the sample code for this chapter. You can open
the folder using Visual Studio Code and run the file StockItemEditDemo, or you can
open the same file and run it from IDLE.

EG13.08 StockItemEditDemo

from tkinter import *

from StockItem import StockItem

from StockItemEditor import StockItemEditor

item = StockItem('D001', 120,

 'dress,color:red,loc:shop

window,pattern:swirly,size:12,evening,long')

 Import the items we’re using

 Create a test stockitem

Editing Stock Items
You might have some questions about this code.

Question: Would it not make sense to put the editing behavior inside the StockItem class?

Answer: Good question. We’ve been talking about the importance of making objects
that can just look after themselves, and you might think it would make sense to put the
frame editor into the StockItem class. However, I don’t think this is a particularly good
idea. Another principle of object orientation is that an object should have a single pur-
pose. The job of a StockItem object is to hold the data about an item of stock. It is not
the job of the StockItem object to edit itself. We’re designing our application so that we
can use the same StockItem objects to store stock details, but the task of editing is quite
different from storing.

So, a separate StockItemEditor class is a better idea. Another way to consider
this would be to consider what would happen if we added the frame editor into the
StockItem class and then made a version of the program that used the command shell
user interface. We would have a lot of code floating around in the StockItem class that
was never used.

CODE ANALYSIS

536 Chapter 13 Python and Graphical User Interfaces

root = Tk()

stock_frame = StockItemEditor(root)

stock_frame.frame.grid(row=0, column=0)

def save_edit():

 stock_frame.get_from_editor(item)

 print(item)

 stock_frame.clear_editor()

save_button = Button(root, text='Save', command=save_edit)

save_button.grid(row=1, column=0)

stock_frame.load_into_editor(item)

root.mainloop()

 Start Tkinter running

 Create a stock editor frame
 Place the editor at the top of the window

 Function that saves the edited stock item
 Get the item back from the editor

 Print the edited item
 Clear the editor

 Create a Save button
 Put the Save button on the display

 Load the stockitem we’re editing

 Start the display

Investigating the Listbox object
We can investigate the Listbox object from the Python Command Shell in IDLE. So, let’s
start that up. Just like the last few investigations, the first thing we need to do is import all the
resources from the Tkinter module and create a root window. Give the following commands
and press Enter after each:

>>> from tkinter import *

>>> root = Tk()

Next, we need to create a Listbox object on the screen. Type the statements below and
press Enter after each one.

>>> lb = Listbox(root)

>>> lb.grid(row=0, column=0)

These statements create a Listbox and set the variable lb to refer to it. The Listbox is then
displayed in the window. You should now see an empty Listbox in the window. We can add
some items to the Listbox using the insert method. Type in the following and press Enter.

>>> lb.insert(0, 'hello')

MAKE SOMETHING HAPPEN

537Create a Graphical User Interface with Tkinter

Create a Listbox selector
We now know just about everything we need to know to create our graphical user
interface version of the Fashion Shop application. We can put buttons on the screen to
initiate actions, and we can edit and store StockItem objects. The last thing we need
to discover is an easy way of allowing the fashion shop owner to find and select her
stock items. We could ask her to type in the stock reference of an item for which she
wishes to search, and then press a Find button to search for the item with that stock
reference. This would work, but when we discuss this idea with our customer, she
doesn’t sound very keen on the idea. What she wants is the ability to pick stock items
out of a list. It turns out that Tkinter has a Listbox object that allows us to do this kind
of thing, so we agree to take on the project.

The first argument to the insert call is the position in the Listbox where we want to insert
the item. The second argument is the text to insert in the list. You should see the item appear
in the Listbox.

Let’s add some more items. Type in the following statements, pressing Enter after each one.

>>> lb.insert(1,'goodbye')

>>> lb.insert(0,'top line')

>>> lb.insert(END, 'bottom line')

The entry 'goodbye' is inserted after hello at position 1, whereas the entry 'top line' is
inserted right at the top. The location END means the end of the list, so you should find that
your Listbox looks like this:

We can work through the StockItem objects and use the stock reference of each item to
build up a Listbox. Now we need to know how the user can select items in the box. This
is another event to which we can bind a function. Let’s write the function first. Type in the
following statements, pressing Enter after each statement and remembering to enter a blank
line at the end.

>>> def on_select(event):

 lb = event.widget

 index = int(lb.currentselection()[0])

 print(lb.get(index))

538 Chapter 13 Python and Graphical User Interfaces

This function will run when the user clicks on one of the items in the Listbox. The first state-
ment gets the object that caused the event. This is provided by the widget attribute of the
event supplied as a parameter. We know that this is the Listbox, so we ask the Listbox to
give us the index of the currentselection. Available options allow a user to select multi-
ple items in a Listbox (although we’re not using these), so the currentselection method
returns a tuple that contains all the selected items. We’re selecting only one item, so we can
just get the first item (the one at element 0) in the tuple. We can then use this index in the
get method on the Listbox to get that item from the Listbox.

The result of these three statements is that the method will find the selected item in the
Listbox and then print it. Next, we need to bind this event handler to the “event selected”
event in the Listbox. Type in the following statement and press Enter.

>>> lb.bind('<<ListboxSelect>>', on_select)

This statement should be familiar. It is how we connected event handlers in our drawing
application. Now, when you click on an object in the Listbox, the selected item is printed on
the console. The Fashion Shop application will use the selected stock reference to locate and
display the item to which it refers.

Create a StockItem selector
We can use a Listbox to allow the user of the Fashion Shop application to select an
item from its stock reference. Now we’ll create a class called StockItemSelector that
we can use to generate a Frame that can be displayed in the GUI for our Fashion Shop.
When I make the StockItemSelector class, I’ll follow the same pattern as for the
StockItemEditor class by deciding what the StockItemSelector class needs to do
and then filling in the methods. The two things I think the StockItemSelector class
needs to do are:

 ● Accept some StockItems from which to select

 ● Tell me when an item has been selected from the list

The first of these actions seems to make sense. We just need to create a method in
the StockItemSelector class that can be called to tell the StockItemSelector to
populate the Listbox. However, the second action is a bit trickier. We’re quite happy
with the idea of calling objects to make them do things for us, and we’ve done this a
lot. We call a method in the StockItem class to add stock, and another method to tell
the StockItem that stock has been sold. But how do we make an object tell us things?
Programmers call this part of development message passing. One object is sending a
message to another. In this case, the StockItemSelector class wants to send a mes-
sage to an object to tell it that a StockItem has been selected.

539Create a Graphical User Interface with Tkinter

540 Chapter 13 Python and Graphical User Interfaces

It’s actually very easy. We just give the sender object a reference to the receiver
object and then when we want to deliver a message to the object, the code in the
StockItemSelector just calls a method on that reference. We can give this reference
when we initialize the StockItemSelector class.

class StockItemSelector(object):

 '''

 Provides a frame that can be used to select

 a given stock item reference from a list

 of stock items

 The stock item list is delivered to the

 class via the populate_listbox method

 Selection events will trigger a call

 of got_selection in the object provided

 as the receiver of selection messages

 '''

 def __init__(self, root, receiver):

 '''

 Create an instance of the editor. root provides

 the Tkinter root frame for the editor

 receiver is a reference to the object that

 will receive messages when an item is selected

 The event will take the form of a call

 to the got_selection method in the

 receiver

 '''

 pass

 def populate_listbox(self, items):

 '''

 Clears the selection Listbox and then

 populates it with the stock_ref values

 in the collection of items that have

 been supplied

 '''

 pass

Selecting Stock Items
You might have some questions about this code.

Question: What are we doing in this method?

Answer: We are setting up an instance of the StockItemSelector class that can be
used to display a Listbox of stock item references. When the user selects one of these
references, we want to tell another object that this has happened. The __init__ method
accepts two parameters: the root frame for the window that will be used to display this
frame, and a reference to the object that will receive a message each time the user selects
a stock item.

The __init__ method stores a reference to the message receiver, builds a Listbox, and
then creates an event handler that will run when the user selects something from the list.

CODE ANALYSIS

541Create a Graphical User Interface with Tkinter

This is the empty class that contains the methods that need to be filled in. Let’s look at
the __init__ method first.

def __init__(self, root, receiver):

 self.receiver = receiver

 self.frame = Frame(root)

 self.listbox = Listbox(self.frame)

 self.listbox.grid(row=0, column=0)

 def on_select(event):

 '''

 Bound to the selection event in the Listbox

 Finds the selected text and calls

 the message receiver to deliver the name

 that has been selected

 '''

 lb = event.widget

 index = int(lb.curselection()[0])

 receiver.got_selection(lb.get(index))

 self.listbox.bind('<<ListboxSelect>>', on_select)

 Initialize the StockItemSelector
 Store the reference to the receiver so that

we can deliver results to it

 Create the frame that we will use to store
the controls

 Create a Listbox in the frame
 Place the Listbox in the frame

 Gets the Listbox that produced the event
 Get the index of the selected item

 Call the got_selection method
in the message receiver object

 Bind the got_selection event
handler to the Listbox

Question: What happens if the receiver doesn’t have a got_selection method?

Answer: Good question. The idea is that the StockItemSelector will call the
got_selection method on the receiver object when the user selects an item in the
Listbox. If there is no method in the receiver object, the program will fail at this point
with an exception. Fortunately, Python provides a built-in function that can be used to
determine whether a particular object has a given attribute, so we could add an assert
to test that a given object will work:

assert hasattr(receiver, 'got_selection')

The hasattr function accepts two arguments: a reference to an object, and a string.
It returns True if the object has an attribute with the given name. The above statement
(which we should add to __init__) will cause the program to raise an exception if the
receiver (which is supposed to have a method called got_selection) does not have a
got_selection method.

542 Chapter 13 Python and Graphical User Interfaces

The second method in the StockItemSelector class accepts some StockItems to
display in the Listbox.

def populate_listbox(self, items):

 self.listbox.delete(0, END)

 for item in items:

 self.listbox.insert(END,item.stock_ref)

Now that we have our selection class, we can create a program that will test it. We can
create a class that contains a got_selection method and then connect an instance of
that class to the selector object.

EG13.09 StockSelectDemo

from tkinter import *

from StockItem import StockItem

from StockItemSelector import StockItemSelector

class MessageReceiver(object):

 def got_selection(self, stock_ref):

 Add the items to the Listbox
 Clear the Listbox of previous values

 Iterate through each item that has been supplied
 Add the stock_item attribute of

the item to the end of the Listbox

 Import all the required items

 Class that will act as the receiver
of the selection messages

 Method that will be called when an item is selected

543Create a Graphical User Interface with Tkinter

 print('Stock item selected :', stock_ref)

stock_list = []

for i in range(1,100):

 stock_ref = 'D' + str(i)

 item = StockItem(stock_ref, 120,

 'dress,color:red,loc:shop

window,pattern:swirly,size:12,evening,long')

 stock_list.append(item)

receiver = MessageReceiver()

root = Tk()

stock_selector = StockItemSelector(root, receiver)

stock_selector.populate_listbox(stock_list)

stock_selector.frame.grid(row=0, column=0)

root.mainloop()

The program above is a demonstration of how the StockItemSelector is used. It
creates 100 sample stock items and uses these to create a stock selector. When a stock
item is selected, the stock reference of the selected item is printed. Figure 13-22
below shows the output from the program. You can find the entire sample program in
the folder EG13-09 StockSelectDemo with the sample program files for this chapter.
Run the program StockItemSelectorDemo.py to see the demonstration.

Figure 13-22 Testing the StockItemSelector

 Print a message to show that the
selection has taken place

 Create a test stock list

 Create 100 test stock items
 Create a stock reference for this item

 Create a test stock item

 Add the test stock item to the list

 Create an instance of the
message receiver class

 Create the display
 Create a StockItemSelector

instance

 Populate the StockItemSelector
with the sample stock list

 Add the StockItemSelector frame to the display
 Start the display loop

544 Chapter 13 Python and Graphical User Interfaces

An application with a graphical
user interface
Figure 13-23 shows the completed Fashion Shop with a graphical user interface. On
the left, you can see the StockItemSelector in action, and at the right of the frame,
you can see the StockItem editor. The remaining elements on the screen are buttons
wired into the graphical user interface. They send commands to the various elements
in the application, which seems to work. On the top, I’ve added a Search button. The
fashion shop owner can enter search tags and the press the Search button to filter the
selection of stock that is shown. The application is presently showing all the blue items
with a swirly pattern.

Figure 13-23 A Fashion Shop application with a graphical user interface

The user can add and sell amounts of stock by entering a number and pressing the
appropriate button. The selected stock item is then updated. The user can also edit
the details of a stock item. The changes are stored when the user navigates away from
that item onto another. To create a new item, the user presses the Create New Stock
Item button and then enters the new stock item details. When they move off that
item, it is automatically saved in the application. When the user closes the application,
the shop data is automatically stored in a file using pickling. This would serve as the
basis of a working stock management system.

You can learn a lot by going through this code. You can find it in the folder
EG13-10 FashionShop in the sample programs for this chapter. If you start the
FashionShopShellUIApp program, you get a Fashion Shop that you can manage
via the Command Shell. If you start the FashionShopGUIApp application, you get
a Fashion Shop that you can manage via a graphical user interface. However, both
programs use the same stock management classes.

545Create a Graphical User Interface with Tkinter

PROGRAMMER’S POINT

Always try using the programs you’ve written
This sounds like a stupid observation. Of course, you should try to use a program that you
just wrote. But what I mean is that you should try to use it properly. You should try entering
ten items of stock and find out if there’s anything annoying about the way your program
works. My first version of the Fashion Shop above displayed a message box each time an
item was edited or saved. I thought this was a nice idea, but it turns out that it’s a pain to
keep clearing message box items after every action, so I changed it to now only display a
message if something goes wrong.

When I was teaching programming, I’d watch people laboriously demonstrate programs
they had written that were obviously horrible to use. I’d ask them afterward how they
would ever expect their customer to use them when even the developer had a tough time
making them work. I’m fairly happy with the Fashion Shop application, but I’m also fairly
sure that after a day spent using it, I’d make a few changes to the way it works.

Complete Fashion Shop application
You might have some questions about my Fashion Shop application.

Question: Can we change the size of the text on the screen?

Answer: Yes. When you create a Label object, you can set the font and text size to be
used for the label. You can even create labels that contain images. The Tkinter framework
is extremely powerful, and it is well worth finding out more about it.

Question: Can we stop the Fashion Shop application from displaying the Command Shell
each time it runs?

Answer: Yes, you can. You do this by changing the file extension of the Python program
from .py (which means “contains a Python program”) to .pyw (which means “contains a
Python windows program”). I’ve done this for the FashionShopGUIApp in the folder
EG13-10 FashionShop.

CODE ANALYSIS

546 Chapter 13 Python and Graphical User Interfaces

What you have learned
In this chapter, you started by learning a bit about Visual Studio Code, a development
tool that makes creating programs made from multiple components easier. Then you
found out about graphical user interfaces. These are made up of objects that rep-
resent items on the screen—for example, labels, text to be entered, and buttons to
be pressed. The screen display serves as a container for these objects, which can be
positioned on the screen using a grid to lay them out. Each display object is placed at
a specific location (a cell) in the grid and can be made to span one or more grid cells.
An object can be positioned within the cell using “sticky” points of the compass. If an
object is made to stick to both sides of a cell (for example the “east” and the “west” of
the cell), then it is stretched to fill the cell boundaries.

Objects on the screen can generate events, which are mapped onto calls to a Python
function or method in a class. An example of this behavior is the Button display com-
ponent, which calls a command method when the button is pressed by the user. How-
ever, a program can bind to events generated by all components. The events can be
originated by mouse, keyboard, or screen events. We saw these in action and learned
how to draw graphics on a canvas when we made a simple drawing program.

You also extended the event mechanism into your own programs, where a stock item
selector was made to generate an event in the Fashion Shop user interface when the
user of the program selects an item.

Here are some points to ponder about graphical user interfaces.

Build your own application
The Fashion Shop program is a great jumping-off point for any application that you might
like to write to store information about items. Think of something you’d like to store data
about—perhaps favorite football players, recipes, monster trucks, or whatever—identify the
items about each that you’d like to store, and then use the Fashion Shop code as the basis of
an application that can manage that data.

MAKE SOMETHING HAPPEN

547What you have learned

Is Tkinter the only way to create Graphical User Interfaces in Python?

No. I like Tkinter because it is part of Python (and therefore available everywhere),
easy to start with, and it does what I want. However, there are lots of other systems
that your program can use to create a graphical user interface. If you want to try
something different, try Kivy (kivy.org/#home) or PyQT (wiki.python.org/moin/PyQt).
The thing to remember is that having used Tkinter you now know the fundamentals
of graphical user interface construction and you can apply this knowledge to other
libraries that you might want to use in the future.

Are programs with a graphical user interface easier to create than those that
use a Command Shell?

This is a very good question. When we were writing the programs that used the
Python Command Shell, the program had to ask the user questions and then make
sense of the replies. But with a GUI, we can just provide buttons for the user to press.
A program with a GUI doesn’t need to worry about what to do if the user enters an
invalid command, because all the user can do is press the buttons on the screen.

This seems to imply that programs with a GUI might be easier to create, and in some
ways, they are. However, you need to spend time making sure that what happens
when buttons are pressed are the right actions, which can be tricky and will test your
organizational skills.

Is a program with a GUI still a “data processing” program?

This is a very good question. When we started programming, we had this model of a
computer program as something that takes in some data, does something with it, and
then produces an output. A program with a GUI doesn’t seem to work this way. The
user will type in some data in one place and then press a button to perform an action.

I find it best to think of the event handlers that run inside a program with a graphi-
cal user interface as tiny programs that all cooperate to make the system work. The
programmer just needs to ensure that the actions fit together to make a complete
system. At the beginning of this book, I said “If you can plan a birthday party, you can
write a program.”

When you’re creating a program that uses software components and a graphical user
interface, you find yourself in the role of an organizer as much as a programmer, as
you seek to ensure that messages from one source are used to trigger actions in com-
ponents to produce the results that the user wants. From a design perspective, it’s also
a good idea to separate the classes that deal with the user interface from those that
store the data. We’ve seen that this gives flexibility, in that we have created a Fashion
Shop application with a Graphical User Interface that uses exactly the same data stor-
age code as our previous text version of the application.

http://wiki.python.org/moin/PyQt

14
Python programs
as network clients

550 Chapter 14 Python programs as network clients

Computer networking
Before we look at how Python programs use network connections, we need to learn
a little bit about networks. This is not a detailed description, but it should give you
enough background to understand how our programs will work.

Network communication
Networks can use wires, radio, or fiber optic links to send their data signals. Whatever
the medium, the fundamental principle is that hardware puts data onto the medium
in the form of digital bits and then gets it off again. A bit is either 0 or 1 (or you can
think of a bit as either true or false) and can be signaled by the presence or absence of
a voltage, light from a light-emitting diode (LED), or a radio signal. If you imagine sig-
naling your friend in the house across the road by flashing your bedroom light on and
off (Figure 14-1), you’ll have an idea of the starting point of network communications.

Figure 14-1 House-to-house networking

Once we have this raw ability to send a signal from one place to another, we can start
transferring useful data. We could invent a protocol (an arrangement of messages
and responses) and use it to pass messages. To communicate useful signals, you must
agree on a message format. You could say, “If my light is off, and I flash it on twice, it
means that it’s safe to come around because my sister is out. If I flash it once, it means
don’t come. If I flash it three times, it means to come and bring pizza with you.” This
is the basis of a protocol, which is an arrangement by communicating parties on the
construction and meaning of messages.

The messages and the protocol are independent of each other. We could replace “flash
the light” with “tap on the water pipes” or “make a puff of smoke, “and the protocol
could be the same. Three flashes or three taps could each mean “bring pizza.” When we
design networks, we can express this using layers, as depicted in Figure 14-2.

551Computer networking

Lights

Our message protocol

Pipes Smoke

Transport layer

Physical layer

Figure 14-2 Layers in networks

The protocol sits on top of a physical layer that can deliver the network events. We can
use light flashes, bangs on a pipe, or even puffs of smoke to deliver network messages.
Each layer will set out standards. For example, the standard for the Lights physical layer
in the network will state, “A flash must be no longer than one-half second, and all the
flashes must occur within a five-second period.” The standard for the Pipes layer will
describe how loud a tap on the pipe must be.

The transport protocol on top of the physical layer will be designed with no consid-
eration for how the messages are sent; it only will be told what message events have
been received. We can add new kinds of message delivery. For example, we could
add a flag-waving delivery without having to change the entire network. The network
protocols used by the Internet are based on this layered approach.

Address messages
Your bedroom light communication system would be more complicated if you had
two friends on your street who wanted to use their bedroom lights to communicate
with you. You would have to add some form of addressing and give each person a
unique address on the network. A message would now be made up of two compo-
nents. The first component would be the address of the recipient, and the second
would contain the message itself. Computer networks function in the same way. Every
station on a physical network must have a unique address. Messages sent to that
address are picked up by the network hardware in that station.

Networks also have a broadcast address, which allows a system to send a message
that will be acted on by every system. In our “bedroom light network” a broadcast
address could be used to warn everyone that your sister has come home and her new
boyfriend is with her, so your house is to be avoided at all costs. In computer net-
works, a broadcast is how a new computer can learn the addresses for important sys-
tems on the network. A system can send out a broadcast saying, “Hi. I’m new around
here!” Another system would respond with configuration information.

All the stations on a network can receive and act on a broadcast sent around it. In
fact, if it wanted to, a station could listen to all the messages traveling down its part
of the wire or Wi-Fi channel, which illustrates a problem with networks. Just as all

552 Chapter 14 Python programs as network clients

your friends can see all the messages from your bedroom light, including those not
meant for them, there is nothing to stop someone from eavesdropping on network
traffic around your network. When you connect to a secure website, your computer
is encoding all the messages it sends out so that someone listening other than the
intended recipient would not be able to learn anything.

Hosts and ports
If we want to use our bedroom light flashing protocol to talk to people at the same
address, we need to improve our protocol. If we want to send messages to Chris and
Imogen, who both live in the same house, we would need to improve our protocol so
that a message contains data that identifies the recipient.

In the case of a computer system, we have the same problem. A given computer
server can provide an immense variety of different services to the clients that connect
to it. The server might be sending webpages to one user, sharing video with another,
and hosting a multiplayer game for 20 people all at the same time. The different cli-
ents need a way of locating the service they want on the server.

The Internet achieves this by using “ports.” A port is a number that identifies a service
provided by a computer. Some ports are “well-known.” For example, port number 80
is traditionally used for webpages. In other words, when your browser connects to a
webpage, it’s using the Internet address of the server to find the actual computer, and
then it’s connecting to port 80 to get the webpage from that server.

When a program starts a service, it tells the network software which port that service
is sitting behind. When messages arrive for that port, the messages are passed to the
program. If you think about it, the Internet is just a way that we can make one pro-
gram talk to another on a distant computer. The program (perhaps a web server) you
want to talk to sits behind a port on a computer connected to the Internet. You run
another program (perhaps a web browser) that creates a connection to that port that
lets you request webpages and display them on your computer.

Programmers can write programs that use any port number, but many network connec-
tions contain a component called a firewall that only allows certain packets addressed to
particular well-known ports to be passed through, which reduces the chance of systems
on the network coming under attack from malicious network programs.

Send network messages with Python
Now that we know how the fundamentals of the network function, we can look at how
a Python program can use a network to send and receive messages. We’ll send a mes-
sage using the User Datagram Protocol (UDP) element of the internet protocol suite.

Send a network message
The best way to find out about networking is to use it to send a message from one program
to another. We can do that from the Python Command Shell in IDLE. So, let’s start that up.
The first thing we need to do is import all the resources from the socket module. Give the
following command and press Enter:

>>> import socket

The socket module contains the socket class that we’ll use to create and manage network
connections. Let’s make an instance of the socket class to receive messages. Type in the state-
ment below and press Enter:

 >>> listen_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

The socket constructor accepts two arguments. The first is the address family that the socket
will use to refer to hosts. In this case, we’ll use the Internet address family, so we use the value
AF_INET from the socket module. The second argument is the type of messages we will send.
We will send datagrams. A datagram is a single, unacknowledged message that’s sent from
one system to another, in the same way that we could flash the lights in our inter-house net-
work to deliver a message to someone who may or may not be watching.

Now that we’ve created our socket, we need to consider the address to which we’ll connect it.
A network address can be written as a tuple. Type in the statement below and press Enter:

>>> listen_address = ('localhost', 10001)

MAKE SOMETHING HAPPEN

553Computer networking

A datagram is a single message sent from one system to another. The sender of a
datagram has no idea that it has been received unless the recipient returns a mes-
sage acknowledging receipt. The internet protocol suite is the set of standards that
describes how the Internet and associated networks work. It is frequently referred to
as the TCP/IP suite. This is because the standard originally described the Transmis-
sion Control Protocol that linked systems on a network and the Internet Protocol that
allowed communications between networks. You can find a good description of how
UDP works here: https://en.wikipedia.org/wiki/User_Datagram_Protocol.

https://en.wikipedia.org/wiki/User_Datagram_Protocol

The listen_address tuple holds two values. The first of these is the address of the com-
puter to which we will connect. Initially, we’ll just send the messages to a process on our own
computer so we can use the special address ‘localhost’ to represent the current machine. The
second value in the tuple is the port to which the program will connect. Ports are identified
by numbers. We’ll use port 10001.

The next thing we need to do is bind the socket to the server address from which it will listen.
Once we have done this, the socket can be made to listen for messages on the port given in
the address. The bind method is given the address from which to listen, and it configures the
socket to listen on the address given. Type in the following and press Enter.

>>> listen_socket.bind(listen_address)

Now we can ask our socket to receive some data. We can use the recvfrom method, which
will fetch a single datagram. The method accepts an argument that gives the maximum size
of the datagram that will be accepted. Type the following and press Enter.

>>> result = listen_socket.recvfrom(4096)

Notice that you don’t get the >>> prompt back from this command because the recvfrom
method has not yet returned; it is waiting for a datagram to arrive.

We now need to make a transmitter. We will need another copy of the IDLE Python Com-
mand Shell to do this, so start up another one. As with the listening program, the first thing
we need to do is import the socket module:

>>> import socket

Now we can make a send socket. Type in the statement below and press Enter:

 >>> send_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

Note that send_socket is created in the same way as listen_socket. Next, we need to
create an address to identify the recipient of the message. We’ll send the message back to
ourselves, so we use the same address. Type in the statement below and press Enter:

>>> listen_address = ('localhost', 10001)

554 Chapter 14 Python programs as network clients

And now, for the grand finale, we’ll send a message over the network. Type in the following:

>>> send_socket.sendto(b'hello from me', send_address)

This sends a message from this IDLE Command Shell to anything listing on port 1001, which in
our case is the listener program. Press Enter to send the message:

>>> send_socket.sendto(b'hello from me', send_address)

13

>>>

The sendto method returns the number of data bytes that the method has sent. In this case,
it has sent 13 bytes (the number of characters in the string 'hello from me'. You might be
wondering why the string has the letter b in front of it. This is because Python 3 normally
encodes string characters using a standard called Unicode (see ”Working with Text” in Chap-
ter 4). We can’t send Unicode values over a socket, but we can send bytes. Putting a b in front
of a string tells Python to make this string out of bytes rather than Unicode characters. So,
now that the message has been sent, let’s see if it has been received.

Go back to the IDLE Command Shell where the listener is running. You should see that the
>>> prompt has returned because the recvfrom method has completed and returned a
value into the variable result. We can use the print function to view the result:

>>> print(result)

When you press Enter to perform the print, you’ll see that the contents of the result are a
tuple that contains two items. The first item is a string containing the message sent from the
sender. The second item is another tuple that contains the address of the system that sent the
message. We’ll talk about Internet addresses in the next exercise when we use these functions
to send messages between computers.

>>> print(result)

(b'hello from me', ('127.0.0.1', 51883))

It might not seem like much, but these actions are the basic building blocks of every program
that uses the Internet. Whenever you load a webpage, stream a video, or send an email, the
data is transferred by one process listening for packets of data and another sending packets
of data.

555Computer networking

Sending network messages
You might have some questions about what we’ve just done.

Question: Can we send things other than text?

Answer: Yes. A datagram sends a block of byte values, but these can contain any kind
of data. We are transferring strings, but we could just as easily transfer fashion shop
stock items.

Question: What’s the largest thing you can send?

Answer: We set the maximum size of the incoming message in the recvfrom method.
A program can send a message of around 65,000 bytes. If we want to send larger items,
we must send those as multiple messages. Fortunately, there are more network functions
that can split and reassemble large items. We’ll look at these later.

Question: What happens if we send a message and the listener is not listening?

Answer: Nothing. We’re sending the simplest kind of message, a datagram. The sender
has no way of knowing whether a datagram was received.

Question: Can the listener listen to messages from other computers?

Answer: Yes. As long as the messages are sent to the correct port (in this case, port
10001), the listener will receive them.

Question: Can the sender send messages to other computers?

Answer: Yes. By using a different send address, a socket can send messages to other
ports and machines.

Question: How long would the listener wait before it heard anything?

Answer: It would wait forever. However, the Socket module provides a method called
setdefaulttimeout that can be used to set the number of seconds that a recvfrom
method will wait for an incoming message. If nothing has arrived before the timeout has
elapsed, the recfrom method will raise an exception.

Question: Can using sockets generate exceptions?

Answer: Yes. A program that uses network connections should take care to catch exceptions
that might be raised when a network connection fails or a host disconnects unexpectedly.

CODE ANALYSIS

556 Chapter 14 Python programs as network clients

557Computer networking

Send a message to another computer
The sendto and recvfrom methods can be used to send messages to another com-
puter via a local network. You could use these methods to connect two machines you
have at home. To do this, you need to obtain the IP (or Internet protocol) address of
the machine to which you are sending the message. You can think of the IP address
as the “phone number” of your computer on the network. If you don’t have the IP
address of a computer, you can’t send messages to it. The Python socket module
contains functions that can be used to find the IP address of the computer running
the Python program. If you load the program below, it will print the address of the
machine on which it is running. You can then use the address in the sender program.

EG14.01 Receive packets on port 10001 from another machine

import socket

host_name = socket.gethostname()

host_ip = socket.gethostbyname(host_name)

print('The IP address of this computer is:', host_ip)

listen_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

listen_address = (host_ip, 10001)

listen_socket.bind(listen_address)

print('Listening:')

while(True):

 reply = listen_socket.recvfrom(4096)

 print(reply)

When you run the receiver program above, it will print a message giving the IP
address and then state that it is listening for inputs:

The IP address of this computer is: 192.168.1.55

Listening:

Import the socket library

 Get the host name for this computer
 Use the host name to get the IP address

 Print the IP address

 Create the listen socket
 Create the address to listen on this machine

 Bind the socket to the address

 Loop forever
 Wait for an incoming message

 Print the message

558 Chapter 14 Python programs as network clients

 Now you can load the send program on the machine that’s doing the transmitting.

EG14.02 Send packets on port 10001 to another machine

import socket

import time

You will need to change this to the address

of the machine to which you are sending

target_ip = '192.168.1.55'

send_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

destination_address = (target_ip, 10001)

while(True):

 print('Sending:')

 send_socket.sendto(b'hello from me', destination_address)

 time.sleep(2)

You will need to change the value of target_ip in the program to the address that
was printed by the receiver program. When you run the sender program, you should
see messages appearing on the screen of the receiver. You will have to interrupt them
by pressing Ctrl+C or selecting Shell, Interrupt Execution from the IDLE menu.

Route packets
The sample programs above worked for me because both computers were connected
to my home network. However, not everything on the Internet is connected to the
same network. My home network is different from the one operated by my next-door
neighbor. The Internet is a very large number of separate “local” networks that are
connected. To transmit messages from one network to another, we must introduce
the idea of routing.

Going back to the bedroom light network we discussed earlier in this chapter, a
friend who lives further down the street might not be able to see your bedroom light.
However, she might be able to see the light from your friend’s house next door, so you
could ask your friend next door to receive messages and then send them on for you.
Your friend next door would read the address of the message coming in, and if it was
for your friend on the next block, she would transmit it again. Figure 14-3 shows how
this works. Your friend uses the window on the left to talk to you and the window on
the right to relay messages to your more distant friend.

 Import the socket module
 We will use the sleep function

from the time module

 Set the IP address of the
machine to which we are sending

 Create the socket
 Set the destination address

 Loop forever
 Display a message

 Send a message
 Sleep for two seconds

559Computer networking

Your House Friend’s House Distant House

Figure 14-3 Routing from house to house to house

You can think of your friend in the middle as performing a routing role. She has a con-
nection to both “networks”—the people you can see, and the people that your distant
friend can see. She is therefore in a position to take messages from one network and
resend them on the other one. Your connection to the Internet is managed by a router,
which is a computer specially programmed to send and receive messages using the
Internet protocols.

The diagram in Figure 14-4 shows how this all fits together. The machines on the
home network are directly connected. The Desktop PC can send pages straight to
the printer. However, if the Desktop PC needs to load webpages from a web server at
Microsoft, the requests for the pages must leave the local network and travel via the
Internet. Messages that need to go off a local network are sent to the router, which
forwards them to the Internet. The router is also responsible for receiving messages
sent from the Internet to machines on the local network. The router will retransmit
these messages onto the local network, addressed to the correct machine. This pro-
cess is called network address translation, or NAT.

Desktop PC Router Router

MicrosoftPrinter

Phone

Internet

Figure 14-4 Routing and the Internet

Network and firewall problems
I managed to use the sample programs EG14-01 Receive packets on port 10001 from
another machine and EG14-02 Send packets on port 10001 to another machine to send
messages from a Windows PC to an Apple Mac. I was asked by the Windows Firewall to allow
Python programs to use the network, but once I did this, the programs worked fine.

A firewall is a component of the network management software in a computer connected to
a network. It tries to make sure that programs are not using network connections improperly.
If your computer becomes infected by a virus, it’s the job of the firewall to stop the virus pro-
gram from using your network connection to infect other computers. The firewall keeps a list
of programs that are allowed to use the network. If the firewall detects network access from a
program the firewall has not seen before, it will ask the user to confirm that the new program
may use the network.

Once I selected Allow access in the above dialog, my network conversation worked fine.
However, I had more difficulty sending messages from the Mac to the PC. If these programs
don’t work, your network might be restricting programs to a specific set of ports. These pro-
grams will also fail to work if the two machines are on separate networks.

WHAT COULD GO WRONG

560 Chapter 14 Python programs as network clients

561Computer networking

Connections and datagrams
The Internet provides two ways for systems to exchange information: connections
and datagrams. A datagram is a single message sent from one system to another.
The Python programs we created earlier use datagrams. However, you can also use
the Internet to create connections between systems on the network. The Transmis-
sion Control Protocol (TCP) is used by the Internet to set up and manage connections
between stations. You can find a good description of the protocol here: https://
en.wikipedia.org/wiki/Transmission_Control_Protocol.

When two systems are connected, they must perform extra work to manage the con-
nection itself. When one system sends a message that’s part of a connection, the net-
work either confirms that the message was successfully transferred (once the network
has received an acknowledgment) or gives an error saying that it could not be delivered.

Connections are used when it’s important that the entire message gets through.
When your browser is loading a webpage, your computer and the web server share a
connection across the network, which ensures that all parts of the webpage are deliv-
ered and that any failed pieces are retransmitted. The transmission, confirmation, and
retransmission process means data is transported more slowly. Managing a connec-
tion places heavier demands on the systems communicating this way. You can regard
a connection to another machine as much like the file object that we use to connect
a program to a file. A program can call methods on a connection to send messages
to the connection and check if anything has been received from the connection. The
connection will remain open until it is closed by one of the systems using it.

Networks and addresses
When we sent and received messages using the test programs above, we used
addresses like 192.168.1.55. Earlier in this chapter, we said that these are called Internet
protocol, or IP, addresses, and that you can think of them as the “telephone number”
of a specific computer on a network.

However, nobody wants to have to remember an IP address like this. People would
much rather use a name like www.robmiles.com to find a site. To solve this problem, a
computer on the Internet will connect to a name server, which will convert hostnames
into IP addresses. The system behind this is called the domain name system, or DNS.
A DNS is a collection of servers that pass naming requests around among themselves
until they find a system with authority for a particular set of addresses that can match
the name with the required address.

We can think of a name server as a kind of “directory inquiries” for computers. In days
past, if I wanted to know the phone number of the local movie house, I would call for
directory assistance. When a computer wants to know the IP address of a website, the
DNS is queried.

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.robmiles.com

562 Chapter 14 Python programs as network clients

Consume the web from Python
The web is one of many services that use the Internet. When a browser wants to read a
webpage, it sets up a connection to the server and requests the page content. The page
content is expressed in Hypertext Markup Language, or HTML. The page content might
contain references to images and sounds that are part of the webpage. The browser will
set up connections to download these too and then draws the page for you on the screen.

Read a webpage
If we wanted, we could write low-level, socket-based code to set up a TCP connection
with a web server and then fetch the data back. However, this is such a common use
for programs that the creators of Python have done this for us. The urllib module
uses the Internet connection to talk to a web server and fetch webpages for our pro-
grams. The URL returns the webpage associated with it.

EG14.03 Webpage reader

import urllib.request

url = 'https://www.robmiles.com'

req = urllib.request.urlopen(url)

for line in req:

 print(line)

If you run this program, it will print the current contents of my blog page. There’s a
lot of it. The urlopen object uses HTTP to request the webpage and then returns an
iterator that we can work through.

Use web-based data
The ability to read from the web can be used for much more than just loading the text
part of a webpage. We can also interact with many other data services. One such service is
RSS (Really Simple Syndication, or Rich Site Summary, depending on which description you
read), which is a format for describing web articles or blog posts. Lots of sites provide RSS
feeds of their content, and programs can connect to and consume their content.

Point the webpage reader program above to https://www.robmiles.com/journal/
rss.xml to download a document that contains my most recent blog posts. The
document is formatted using a standard called XML (eXtensible Markup Language).

 Import the URL reader module

 This is the URL from which the program will read

 Create the web request object
 Work through the web request a line at a time

 Print the line

https://www.robmiles.com/journal/rss.xml
https://www.robmiles.com/journal/rss.xml

563Consume the web from Python

The weather snaps that we used in Chapter 5 also fetch the weather information from
a web server. The program downloads the weather information from a server in the
form of an XML document.

The XML document standard
The XML standard allows us to create documents that can contain structured data.
The documents are designed to be easy for computers and people to read. Program-
mers create an XML document to send data from one computer to another. An XML
document contains a number of elements. Each element can have attributes, which
are just like data attributes in a Python class. An element can also contain other ele-
ments. For a full description of XML, visit https://en.wikipedia.org/wiki/XML.

We can use the XML document returned by the RSS feed from my blog to investigate
how XML works. Below, you can see a slightly abridged version of the RSS feed from
my blog. I’ve removed some elements, but this shows the general format of the docu-
ment (and the fact that I’m rather excitable in my blog posts).

<rss version="2.0">

 <channel>

 <title>

 robmiles.com

 </title>

 <item>

 <title>

 Water Meter Day

 </title>

 <category>Life</category>

 <description>

 <![CDATA[We had a new water meter installed yay!]]>

 </description>

 </item>

 <item>

 <title>

 Python now in Visual Studio 2017

 </title>

 <category>Python</category>

 <category>Visual Studio</category>

 <description>

 <![CDATA[Python is now available in Visual Studio 2017 yay!]]>

 </description>

 </item>

 </channel>

</rss>

 RSS element in the document
 Channel element in the RSS element

 Element giving title of the channel
 Title text

 End of title element
 Item in the blog
 Title of the item

 Category of the blog post
 Blog post content

 End of item
 Start of item

 Category of the blog post
 Category of the blog post

 End of item
 End of channel

 End of RSS feed

https://en.wikipedia.org/wiki/XML

The XML document format
You might have some questions about the XML format.

Question: How do parent and child elements work in XML?

Answer: A given XML element can contain other elements. These are called child ele-
ments. Child elements can contain other child elements. In the RSS example above, the
channel element contains two item elements as children. Each item has children, which
are the title and description elements.

Don’t get child elements confused with subclasses of superclasses. A subclass is used in
a class hierarchy and picks up all the attributes of a superclass (sometimes confusingly
called a “parent” class). We use subclasses to allow us to customize a superclass to better
fit a particular situation. It is nothing to do with XML documents.

The best way to think of an XML child element is that it is an attribute of the element
(such as a piece of data about the element), which is actually another XML element.

Question: What does CDATA mean?

Answer: When we put strings into a Python program, we can enclose them in triple
quotes ('''). Text enclosed in triple quotes can span several lines of the program source
and can contain any kind of quote characters. The CDATA element in an XML document
works in the same way. Everything between the <![CDATA[and the]]> items is treated
as the text of that element. This behavior allows us to put entire blog posts inside an
element in an XML document.

CODE ANALYSIS

564 Chapter 14 Python programs as network clients

XML documents are organized into elements. An element has a name and can contain
attributes (data about the element, just like a Python class attribute). The first element
in the sample above is called rss and contains an attribute stating which version of
RSS the element contains. This is used in the same way as the version attribute that
we added to the Contact class in the Contacts manager we created in Chapter 10. It
tells programs the version of the RSS element; in the case of my blog, the version is
number 2.0.

<rss version="2.0">

An element can contain other elements; they are enclosed between the <name> and
</name> parts. Above, you can see that the channel element contains two item ele-
ments and that each item contains a title and a description element.

Question: Why does the second item in the document contain two category elements?

Answer: XML doesn’t necessarily enforce a standard on the content or organization
of an XML document (although you can do this using a schema if you want to—but
this is beyond the scope of this book). You can find out more about XML schema here:
http://www.xml.com/pub/a/2000/11/29/schemas/part1.html.

The category elements of an item are used in the same way as we used the tags in the
Fashion Shop application created in Chapter 11. Readers can search for all my posts about
Python, Visual Studio, or life. The RSS standard allows writers to tag an item with as many
category elements as needed.

The Python ElementTree
We could write a program that decodes the XML file, but it would be difficult work.
Fortunately, Python provides the ElementTree class, which can be used to work with
XML documents. A program can load an XML document in an instance of ElementTree
and then call methods on the instance to navigate the document.

EG14.04 Python ElementTree

import xml.etree.ElementTree as ElementTree

rss_text = '''

<rss version="2.0">

Sample RSS above goes here

</rss>

'''

doc = ElementTree.fromstring(rss_text)

for item in doc.iter('item'):

 title = item.find('title').text

 print(title.strip())

 description = item.find('description').text

 print(' ',description.strip())

The ElementTree class provides a range of methods that you can use to find and work
through elements in an XML document. The iter method is given the name of an ele-
ment and will generate an iteration you can work through using a for loop. The find
method will search a given element for any child elements with a particular name. The

 Import the module and give it a name

 The sample program holds all the text of the XML example

 Create an ElementTree instance from the RSS string

 Iterate through all the item elements in the document
 Find the title element in the item and get the text out of it

 Strip the title text of extra spaces and print it
 Find the description element in the

item and get the text from it

 Strip the title of extra spaces and print it

565Consume the web from Python

http://www.xml.com/pub/a/2000/11/29/schemas/part1.html

Work with weather data
The weather snaps we used in Chapter 5 decode an XML document from the U.S. Weather
Service. The code to get the temperature for a given location is as follows:

EG14.06 Weather Feed Reader

def get_weather_temp(latitude,longitude):

 address = 'http://forecast.weather.gov/MapClick.php'

 query = '?lat={0}&lon={1}&unit=0&lg=english&FcstType=dwml'.\

 format(latitude,longitude)

 req=urllib.request.urlopen(address+query)

 page=req.read()

 doc=xml.etree.ElementTree.fromstring(page)

 for d in doc.iter('temperature'):

 if d.get('type') == 'apparent':

 text_temp_value = d.find('value').text

 return int(text_temp_value)

You can find this function, along with a sample weather file that was returned by the server,
in the folder EG14-06 Weather Feed Reader in the sample programs for this chapter. Try
changing the methods so that you get the maximum and minimum temperatures and the
forecast values.

 The weather web server
 Web query containing

the latitude and
longitude

 Build a web request
 Read the text from the website

 Create an ElementTree from the text
 Work through all the temperature elements

 Is the type attribute of this element “apparent”?
 Get the content of the value

element, which is a child element of
this temperature

 Return an integer obtained from the
text in the value element

MAKE SOMETHING HAPPEN

566 Chapter 14 Python programs as network clients

text attribute of an element is the actual text payload of the element. The output of
the program is as follows:

Water Meter Day

 We had a new water meter installed yay!

Python now in Visual Studio 2017

 Python is now available in Visual Studio 2017 yay!

There are lots of other methods you can use to work with an XML document. You
can even use the ElementTree class to allow you to edit the contents of elements,
remove them, and even add new ones. However, you should be able to use the above
methods to extract data items from XML feeds on the Internet. The sample program
EG14-05 RSS Feed reader contains a few you can use to get started.

567What you have learned

What you have learned
In this chapter, you discovered the fundamentals of network programming and how
networks transfer data from one machine to another. You’ve seen that a protocol
describes how systems can communicate and that the Internet uses protocols that
describe layers of different functionality, with hardware at the bottom and a software
interface at the top. Information is sent between machines in messages called data-
grams, and each machine has a unique IP address on a local network.

You saw that the Internet can be regarded as a large number of local networks that
are connected. A device called a router will take datagrams addressed to remote sites
(machines not connected to the local network) and send them to the Internet. Net-
work connections can either be sent as individual, unacknowledged datagrams or as
part of a connection. A given system can expose connections on one of a number of
different ports. When a program wants to accept connections, it will bind a software
socket to a port on the host machine and accept connections on that port.

Large amounts of data are transferred by the transmission of large numbers of data-
grams. Python provides a socket class that can be used to control a network con-
nection. You used a socket to perform simple communication between two Python
programs. You also used the urllib Python module to connect to a web server and
download the contents of webpages.

Finally, you’ve explored the eXtensible Markup Language (XML) and learned how to
create ElementTree structures from XML documents and extract information from
these documents.

Here are some points to ponder about networking.

Do wireless network devices use a different version of the Internet from
wired ones?

A wireless device uses a different medium from a wired device, but as far as the com-
puter using the connection is concerned, the connections both work in the same way.
The Internet protocols allow the transport method (the means by which data is moved
between devices) to exist as a layer underneath other layers that set up and manage
connections. We’ve done something similar with our software, when we had separate
objects manage the storage of data in the Fashion Shop application in Chapter 12.
As long as the interface between the layers (the method by which one layer talks to
another) is well defined, we can switch the component at one level of the layer with
another component, and the rest of the system would still function.

568 Chapter 14 Python programs as network clients

How big can a datagram get?

The maximum transmission unit (MTU) of a network is the largest message that can
be sent in a single network transaction. The size of the MTU varies depending on the
transmission medium used. You can find out the MTU values for various networks
here: https://en.wikipedia.org/wiki/Maximum_transmission_unit

Do all datagrams follow the same route from one computer to another?

Not necessarily. The Internet is a huge collection of connected networks. A datagram
may have to travel across several networks to get to its destination. Systems that
route datagrams constantly decide on the best way to send them, based on how busy
various parts of the network are and what connections are available. The Internet was
originally designed to be used in a situation where parts of the network could sud-
denly stop working, so this rerouting behavior is built into how it works. It can lead to
some strange effects. Sometimes a datagram sent after another can arrive before the
first one. If we set up a connection using a socket, these effects are hiding from our
program by the network.

Do all datagrams get to their destination?

No. UDP packets are not guaranteed to arrive and are connectionless. TCP packets
are part of a session and are guaranteed to arrive.

What is the difference between XML and HTML?

XML and HTML are both markup languages. That’s what the ML in both of their names
means. HTML and XML look similar internally as they both use the same format for
describing elements and attributes. XML is a standard that describes how to make any
kind of document. I could design an XML document to hold football scores, or types
of cheese, or anything else I want to manipulate and send to other computers. HTML
is a markup language specifically for telling a web browser how to display a webpage.
HTML contains elements that can describe the format of text, the position of images,
and the color of the background, among other things. You can think of HTML as a kind
of XML document specifically for webpages.

What is the difference between HTML and HTTP?

HTML (Hypertext Markup Language) tells a browser what to display on the screen.
HTTP (Hyper Text Transfer Protocol) is how the server and the browser move the page
data (an HTML document) from the server into the browser. We’ll see more of HTTP in
the next chapter.

https://en.wikipedia.org/wiki/Maximum_transmission_unit

15
Python programs
as network servers

572 Chapter 15 Python programs as network servers

Create a web server in Python
The web works by using socket network connections, just like those we created in
Chapter 14. When we use a browser to connect to a web server, the basis of the com-
munication is a socket. A server program listening to a socket connection will send
back the page that your browser has requested.

In Chapter 14, when we created a simple program to read webpages from a server,
we noted that the appearance of webpages is expressed Hypertext Markup Language
(HTML), and the conversation between a browser and a server is managed by a pro-
tocol called Hypertext Transfer Protocol (HTTP). In this section, we’ll learn a bit more
about the communication between a web server and a browser and create some web
servers of our own.

A tiny socket-based server
I’ve created a tiny Python program that provides a socket connection that you can
connect to via a browser program on your computer. It serves out a tiny webpage that
you can view. Let’s look at the code:

EG15-01 Tiny socket web server

import socket

host_ip = 'localhost'

host_socket = 8080

full_address = 'http://' + host_ip + ':' + str(host_socket)

print('Open your browser and connect to: ', full_address)

listen_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

listen_address = (host_ip, host_socket)

listen_socket.bind(listen_address)

listen_socket.listen()

connection, address = listen_socket.accept()

print('Got connection from: ', address)

 Import the socket library

 Use the localhost name for this server

 The server will listen on port 8080

 Build a string that contains
the server address

 Tell the user what to
connect to

 Create the socket
 Create the address to listen on

 Bind the socket to the server address

 Wait for a request from a browser
 Indicate we have a connection

Connect to a simple server
You can use the socket web server on your PC to explore how the web works. Use IDLE to
open the example program EG15-01 Socket web server and get started.

When you run the program, it will display the address of the web server that has been created
and is waiting for a web request. You should see a display like the one below.

>>>

 RESTART: C:/Users/Rob/EG14-03 Tiny socket web server.py

Open your browser and connect to: http:/localhost:8080

MAKE SOMETHING HAPPEN

573Create a web server in Python

network_message = connection.recv(1024)

request_string = network_message.decode()

print(request_string)

status_string = 'HTTP/1.1 200 OK'

header_string = '''Content-Type: text/html; charset=UTF-8

Connection: close

'''

content_string = '''<html>

<body>

<p>hello from our tiny server</p>

</body>

</html>

'''

response_string = status_string + header_string + content_string

response_bytes = response_string.encode()

connection.send(response_bytes)

connection.close()

 Get the network message
 Decode the network message

into the request string

 Print the request string
 HTTP status response

 HTTP response headers

 HTTP content

 Build the
complete response

 Encode the response into bytes

 Send the response bytes

 Close the connection

Now open your browser and connect to the address. The browser will connect to the socket
from the server program and will display the webpage that it serves out:

If you now go back to IDLE, you should see the contents of the web request made by the
browser that’s been printed.

>>>

 RESTART: C:/Users/Rob/EG15-01 Tiny socket web server.py

Got connection from: ('192.168.1.56', 51221)

GET / HTTP/1.1

Host: 192.168.1.56:8080

Connection: keep-alive

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/60.0.3112.113 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/

apng,*/*;q=0.8

Accept-Encoding: gzip, deflate

Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

>>>

The most important word on the page is the very first word of the message, GET, which is the
beginning of the request for a webpage. The GET request is followed by information that the
server uses to determine what kind of responses the browser can accept.

574 Chapter 15 Python programs as network servers

Web server program
Question: Previous sockets that we have created have used a socket type of
socket.SOCK_DGRAM. Why is this program using a socket type of socket.SOCK_STREAM?

Answer: The programs we created in Chapter 14 to send packets between computers
sent individual datagrams using the User Datagram protocol (UDP). A datagram is very
useful for sending quick messages to another computer. You can think of it as the net-
work equivalent of a text message. When you send a text message, you have no way of
knowing whether the message has been received. The browsers and servers on the web
don’t use datagrams to communicate; instead, they establish a network connection using
the Transport Control Protocol (TCP) that allows them to exchange large amounts of data
and ensure that the data has arrived. When a Python program creates a socket, it can
identify that socket as using datagrams (SOCK_DGRAM) or a connection (SOCK_STREAM).

Question: What are the status_string, header_string, and content_string variables
in the program used for?

Answer: The HTTP protocol defines how servers and browsers should interact. The
browser will send a GET command to ask the server for a webpage. The server will send
three items in its response. The first is a status response. If the page was found successfully,
the status returned will be 200, as in the contents of the variable status_string above. If
the page is not found, the status returned will be 404, which means “page not found.”

The status information is followed directly by a header string that gives the browser infor-
mation about the response. In the program above, the value assigned to header_string
tells the browser that the content is text and that the network connection will be closed
once the content has been delivered.

Finally, the server will send the HTML document that describes the webpage to be
displayed. The content string is placed in the variable content_string in the program
above. If you want to use this program to serve different content to the browser, just
change the text in content_string. These three strings are added together to create
the complete response string.

Question: What are the encode and decode methods used for?

Answer: The encode method takes a string of text and encodes it as a block of bytes, ready
for transmission over the network. The string type provides a method called encode, which
will return the contents of a string encoded as a block of bytes. The program uses this
method to encode the response string that the server sends to the browser:

response_bytes = response_string.encode()

CODE ANALYSIS

575Create a web server in Python

The bytes type provides a method called decode that returns the contents of the bytes
decoded as a string of text. The program uses this method to decode the command that
the server receives from the browser.

request_string = network_message.decode()

The network_message contains the block of bytes received from the network, which is
converted into the request_string. The tiny server always serves out the same mes-
sage to the browser, but it could use the contents of the request to determine which page
was being requested.

Question: Could browser clients connect to this server via the Internet?

Answer: This would only be possible if your computer was directly connected to the
Internet, which is not usually the case. As we saw in Chapter 14, a computer is normally
connected to a local network, and the local network is connected via a router to the
Internet. All the machines connected to a local network (whether it’s a home, a school, or
a hotel) could potentially connect to a server connected to that network, but you would
need to configure the router (which connects a local network to the Internet) to allow
messages from the Internet to reach your computer if you want to serve out webpages
to the Internet. This is not something that’s normally permitted because it opens up a
machine to attack from malicious systems on the Internet.

Question: How does the statement that gets the connection work?

Answer: The following statement gets the connection to the socket:

connection, address = listen_socket.accept()

This statement uses a form of method calling that we haven’t used very often. It’s
explained at the end of Chapter 8, in the descriptions of tuples. The accept method
returns a tuple that holds the connection and address values of the system that has con-
nected. We can assign these values directly to variables by using the statement above.
The connection object is like the object we use when we open a file. We can call meth-
ods on the connection object to read messages sent by the program at the other end of
the network connection. We can also call methods on the connection to send messages
to the distant machine.

Question: How could I make the sample program above into a proper web server?

Answer: We would have to add a loop so that the web server would return to waiting
for connections once it had finished dealing with a request. A “proper” web server would
also be able to support multiple web requests at the same time. The socket mechanism
can accept more than one connection at the same time, and Python allows the creation
of threads that can run simultaneously on a computer. However, we wouldn’t want to cre-
ate our own web server, as the developers of Python have already done this for us. We’ll
use their server in the next section.

576 Chapter 15 Python programs as network servers

577Create a web server in Python

Python web server
We know that a web server is just a program that uses the network to listen for
requests from clients. We could create a complete web server by building on the tiny
server we’ve just created, but it turns out that Python provides ready-built classes that
we can use to do this. The HTTPserver class allows us to create objects that will accept
connections on a network socket and dispatch them to a class that will decode and act
on them.

The BaseHTTPRequestHandler class provides the basis of a handler for incoming web
requests that our server receives. We can use the HTTPserver and BaseHTTPRequest
Handler classes to create a web server as shown in the example code below. You can
use a browser to connect to this server in the same way as the one we wrote above,
but this server does not stop after the first request; it will continue to accept connec-
tions and serve out the website until the program is stopped.

EG15-02 Python web server

import http.server

class WebServerHandler(http.server.BaseHTTPRequestHandler):

 def do_GET(self):

 '''

 This method is called when the server receives

 a GET request from the client

 It sends a fixed message back to the client

 '''

 self.send_response(200)

 self.send_header('Content-type','text/html')

 self.end_headers()

 message_text = '''<html>

<body>

<p>hello from the Python server</p>

</body>

</html>

'''

 message_bytes = message_text.encode()

 self.wfile.write(message_bytes)

 return

 Get the server module
 Create a subclass of the

BaseHTTPRequestHandler
class

 Add a do_GET method into the handler class

 Send a 200 response (OK)
 Add the content type to the header

 Send the header to the browser

 Text of the webpage to be sent to the browser
 Encode the HTML string into bytes

 Write the bytes back to the browser

Python server program
Question: How does this work?

Answer: You can think of the HTTPServer class as the dispatcher for incoming requests,
a bit like a receptionist at a large company. An employee of a company could tell the
receptionist “If anyone asks for me, I’m in the board room.” When we create the HTTP-
Server, we tell it “If any web requests come in, create an instance of WebServerHandler
to deal with them.”

When a request comes in, the HTTPServer creates a WebServerHandler and adds all
the attributes that describe the incoming request. The server then looks through the
incoming request and calls the method in the WebServerHandler that matches the
request that’s been made. The handler we created above can only handle GET requests as
it only contains a do_GET method.

Question: What does the WebServerHandler class do?

Answer: The WebServerHandler class is a subclass of a superclass called BaseHTTPRe-
questHandler. A subclass of a superclass inherits all the attributes of the superclass and
can add attributes of its own. The WebServerHandler above contains one attribute,
which is the method called do_GET. The do_GET method will run when a browser tries
to get a webpage from our server; the do_GET method returns the webpage requested
by the browser. We can create different server behavior by changing what the do_GET
method does. We can also make a handler that responds to other HTTP messages by
adding more methods to the handler class (covered later in this chapter).

Question: How does the server program send the page back to the host?

Answer: The connection to the host takes the form of a file connection. When the
WebServerHandler instance is created, it is given an attribute called wfile, which is the
write file for this web request. The do_GET method can use the wfile attribute to write
back the message to the server.

self.wfile.write(message_bytes)

CODE ANALYSIS

578 Chapter 15 Python programs as network servers

host_socket = 8080

host_ip = 'localhost'

host_address = (host_ip, host_socket)

my_server = http.server.HTTPServer(host_address, WebServerHandler)

my_server.serve_forever()

 Socket number for this server
 Use localhost as the network address

 Create the host address

 Create a server
 Start the server

The variable message_bytes contains the message the server is returning. Using a
file in this way makes it very easy for a server to send back any kind of information,
including images.

Question: How is the WebServerHandler class connected to the server?

Answer: When we create the server, we pass the server a reference to the class that it will
use to respond to incoming web requests.

my_server = http.server.HTTPServer(host_address, WebServerHandler)

Above is the statement that constructs the server. Note that the second argument to the
call is WebServerHandler. When the server receives a request from a browser, it creates
an instance of the WebServerHandler class and then calls methods in that instance to
deal with the request.

Serve webpages from files
The web servers we’ve created so far are not very useful because they just serve out
the same information. However, we know that a single web server can serve out may
different pages. Browsers and servers on the World Wide Web use a Uniform Resource
Locator, or URL, string to identify destinations, which includes a path to the resource
that will be provided. Figure 15-1 shows the anatomy of a URL.

// : /porthttp:
protocol name

path
path to resource to

be returned

host
address of server

may be omitted,
in which case port

80 is used

Figure 15-1 Anatomy of a Uniform Resource Locator (URL)

The URL of a host contains the protocol to be used, the network address of the server,
the socket to be used for the connection to the server, and the path to the page on
the server. The URL for the webpage that contains a description of how URLs are con-
structed is shown in Figure 15-2.

579Create a web server in Python

580 Chapter 15 Python programs as network servers

http://www.w3.org/TR/WD-html40-970917/htmlweb.html
protocol host path

Figure 15-2 URL example

This shows that the path to a resource can include folders. In the path shown, the
requested page is in the folder WD-html40-970917, which is held in the folder TR. This
URL does not include a socket because the server is using port 80. If the port address
is left out, the browser will use port number 80, which is the Internet port associated
with the web. We’ve been using port 8080 for the web servers on our local machine.

A server can extract the path information from the GET request and send back the
page that was requested. If the path is left out, the server will send back the “home”
page for that location. A server can use the path to determine which file to return to
the browser. The very first web servers were used to serve files of text that were stored
on them. Below is a web request handler that serves out files.

EG15-03 Python webpage server

class WebServerHandler(http.server.BaseHTTPRequestHandler):

 def do_GET(self):

 '''

 This method is called when the server receives

 a GET request from the client

 It opens a file with the requested path

 and sends back the contents

 '''

 self.send_response(200)

 self.send_header('Content-type', 'text/html')

 self.end_headers()

 # trim off the leading / character in the path

 file_path = self.path[1:]

 with open(file_path, 'r') as input_file:

 message_text = input_file.read()

 message_bytes = message_text.encode()

 self.wfile.write(message_bytes)

 return

 Send a 200 response (OK)
 Tell the browser the content is text

 Finish sending the header

 Get the file name from the path
supplied in the GET request

 Open the file
 Read the file

 Encode the file into a block of bytes

 Write the file back to the browser

http://www.w3.org/TR/WD-html40-970917/htmlweb.html

581Create a web server in Python

Extract slices from a collection
The code above uses slicing, which is something we haven’t seen before. Python pro-
grams can extract slices from collections. Figure 15-3 shows how we would express a
slicing action.

start
start of slice

[:]collection
collection to be sliced

end
end of slice

Figure 15-3 Anatomy of a slice

The start and end positions of the slice are given in square brackets, separated by
a colon character. We can see how this works by slicing my name, which can be
regarded as a collection of individual characters.

>>> 'Robert'[0:3]

'Rob'

The statement above creates a slice from my full name. It starts at the character at the
beginning of my name (with the index 0) and ends at the character “e” (with the index 3).
Note that the “terminating” character is not included in the slice. Here’s another slice:

>>> 'Robert'[1:2]

'o'

The statement above just extracts the “o” from my name. It starts at the character with
the index of 1 and ends at the character with the index of 2 (but does not include the
“b”). Here’s another example:

>>> 'Robert'[:4]

'Robe'

If I leave out the start position, the slice starts at the start of the collection, as shown
above. If I leave out the end position, as shown below, the slice continues to the end
of the string.

>>> 'Robert'[2:]

'bert'

Connect to a file server
We can use the web server above to browse a tiny website. Use IDLE to open the example
program EG15-03 Python webpage server in the folder EG15-03 Python webpage server
in the sample programs folder for this chapter. The folder also contains two HTML pages that
the server will return to the browser. They are called index.html and page.html.

Start the program and open the following address with your browser:

http:/localhost:8080/index.html

MAKE SOMETHING HAPPEN

582 Chapter 15 Python programs as network servers

I can also use negative numbers in my slices, in which case the number is used as an
index from the end of the collection:

>>> 'Robert'[-2:-1]

'r'

The above slice starts two positions in from the end of the string, and ends one posi-
tion in from the end of the string, which means that it just slices off the letter “r.”

You can use slicing on any Python collection, including a tuple. Note that slicing
doesn’t affect the item being sliced, it just returns a “slice” of that item.

The program above uses slicing to get rid of a leading / character on the path attri-
bute in the WebServerHandler object. The statement below would convert “\index.
html” to “index.html” by creating a slice that contains everything but the first charac-
ter of the string. The web server can then use this as the name of the file to be opened
and returned.

file_path = self.path[1:]

http://index.html
http://page.html
http://http:/localhost:8080/index.html
http://$$$�\index.html�
http://$$$�\index.html�
http://$$$�index.html�

The browser will show the first page of our site.

<html>

<body>

<p> This is the index page for our tiny site.</p>

This is another page

</body>

</html>

This is the HTML file for the index page. It contains the text you can see on the page, along
with a link to a second page. When you click the link, the browser will load the next page and
display it.

You can click the link on this page to return to the index.

This is the HTML for the second page of our tiny website:

<html>

<body>

<p>This is another page in our tiny website.</p>

This takes us back to the index </body>

</html>

By now you should have a good understanding of how a web server works and
how we can use Python to create them. We could extend our web server above
to serve out image files and handle the situation when a browser tries to load a
file that doesn’t exist, but the Python libraries provide a web server handler called
SimpleHTTPRequestHandler that can be used to serve out files. Below is a program
that uses this handler to create what must be one of the tiniest web servers you
can build.

583Create a web server in Python

http://"page.html">This
http://"index.html">This

584 Chapter 15 Python programs as network servers

EG15-04 Full Python webpage server

import http.server

host_socket = 8080

host_ip = 'localhost'

host_address = (host_ip, host_socket)

my_server = http.server.HTTPServer(host_address,

 http.server.SimpleHTTPRequestHandler)

my_server.serve_forever()

Get information from web users
We can use the Python servers we’ve created to provide information to users. Next,
we’ll see how our users can send information back to the Python program. To show
how this works, we’ll create a Tiny Message program. Anyone can write messages into
the program for other readers to see via their browser.

Figure 15-4 shows the user interface for this message board. The user can type in
messages and click Save Message to add a message in the list. Also, the user can click
Clear Messages to clear all the messages from the board.

Figure 15-4 Tiny Message Board

Respond to web requests on port 8080
 Use the localhost address

 Create the host address

 Address for the server
 Request
handler

class

Use a message board
The best way to learn what this program will do is to try it. Use IDLE to open the example
program EG15-05 Web message board in the sample programs for this chapter. Start the
program and open the following address with your browser:

http:/localhost:8080/index.html

You should see the message board display. Enter a message into the text area underneath the
New Message heading and click the Save Message button. The page will refresh, and the
message will be displayed in the Messages part of the page. If you add a second message,
you will see it appear below the first one. If you click Clear Messages, all the messages will
be removed from the screen. Now that you know what the program does, we can investigate
how the program does it.

MAKE SOMETHING HAPPEN

The HTTP POST request
Hypertext Transport Protocol, or HTTP, describes how the web browser and the web
server communicate. It defines a series of browser requests. Until now, the only HTTP
request that our server has responded to is the GET request, which is a request to get
a webpage. There are several other browser requests, such as the POST request, which
allows a browser to post information back to the server.

<form method="post">

 <textarea name="message"></textarea>

 <button id="save" type="submit">Save Message</button>

</form>

This is the Hypertext Markup Language (HTML) that describes the part of the webpage
used to submit a new message. The browser will generate a text input area and a Save
button that looks like Figure 15-5.

Figure 15-5 Text entry

585Create a web server in Python

http://http:/localhost:8080/index.html

POST handler
The POST handler method is quite complicated, although it is not very long. You might have
a few questions about how it works. When trying to work out what is happening, remember
what the method has been written to do. The user has filled in a form on the webpage and
pressed the Save Message button. The browser has assembled a response that includes the
text the user entered and sent this back to the server as a POST request.

The POST request has arrived at the server, which has created an instance of the
webServerHandler class to deal with this POST and then called the do_POST method
in this class to deal with the POST.

CODE ANALYSIS

586 Chapter 15 Python programs as network servers

The HTML tells the browser to perform a POST request when the user clicks the Save
Message button. The message sent with the POST request will include the contents of
the text area.

We can create a do_POST method in our HTTP request handler class that will deal with
a POST request.

def do_POST(self):

 length = int(self.headers['Content-Length'])

 post_body_bytes = self.rfile.read(length)

 post_body_text = post_body_bytes.decode()

 query_strings = urllib.parse.parse_qs(post_body_text,

 keep_blank_values=True)

 message = query_strings['message'][0]

 messages.append(message)

 self.send_response(200)

 self.send_header('Content-type','text/html')

 self.end_headers()

 message_text = self.make_page()

 message_bytes = message_text.encode()

 self.wfile.write(message_bytes)

 Get the length of the reply from the browser

 Read the reply into a block of bytes
 Convert the block of bytes into a text string

 Convert the text into a dictionary of query items

 Allow blank values
in the query string

 Extract the message from the query string
 Add the message to the existing messages

 Send the OK response
 Tell the browser it is getting text back

 Send the headers

 Call a method to build the webpage to send back

 Encode the webpage into a block of bytes

 Send the bytes to the browser

Question: How does do_POST read the information sent by the browser?

Answer: The message being posted by the browser can be read via a file connection. The
first statement of the do_POST method determines the length of the file by reading the
Content-Length item from the message header sent by the browser.

length = int(self.headers['Content-Length'])

The headers are provided in the webServerHandler as a dictionary (called headers),
from which a program can load header items by name. The statement above gets the
Content-Length header and then converts it into an integer, which is then used to read
in the response:

post_body_bytes = self.rfile.read(length)

The variable post_body_bytes refers to a block of bytes that contain the response from
the browser. Next, the method converts these bytes into a string using the decode method:

post_body_text = post_body_bytes.decode()

Now we have the text that the browser is sending back to the server. This text is pre-
sented by the browser in the form of a query string, which is a way that HTTP encodes
named items. Items in a query string are given in the form:

name=item

The name of the item will be the name of the textarea being sent back; in this case, the
name is “message,” which you can see in the HTML for the page above. Python provides a
method that converts query strings into a dictionary, which saves us from having to write
our own code to process query strings.

query_strings = urllib.parse.parse_qs(post_body_text,

 keep_blank_values=True)

The parse_qs method creates a dictionary that contains a key for each named item in
the query string. It has been given an extra argument to tell it to add blank query string
values to the dictionary; we will use this when we add the clear command later.

Now that we have our query strings, we can extract the content of the textarea from
the response:

message = query_strings['message'][0]

587Create a web server in Python

The parse_qs method creates a list of items for each key, so the statement above takes
the item at the start of this list (which is the text we want) and sets the variable message
to this. So, at this point, the variable message contains the text that the webpage user has
entered. Now we just need to add the text to the messages that the program is storing.

messages.append(message)

The variable messages is declared as a global variable, and it is a list that holds each
of the entered messages. The make_page method uses the list of messages to create a
webpage, which is returned to the browser.

Question: How does the get_POST method generate the webpage that contains the
messages the user entered?

Answer: The get_POST method above extracts the message from the POST from the
browser and adds it to a list of messages. It then calls the make_page method to create
a webpage that includes these messages. Next, we’ll investigate this method.

588 Chapter 15 Python programs as network servers

A server must send a webpage in response to a POST request from a browser. Some-
times this webpage contains the message, “Thank you for submitting the informa-
tion,” but our message program will just redraw the webpage with the new message
included. The webPageHandler class contains a method, make_page, that does this. The
make_page method is called in the do_GET and do_POST methods.

def make_page(self):

 all_messages = '
'.join(messages)

 page = '''<html>

<body>

<h1>Tiny Message Board</h1>

<h2>Messages</h2>

<p> {0} </p>

<h2>New Message</h2>

<form method="post">

 <textarea name="message"></textarea>

 <button id="save" type="submit">Save Message</button>

</form>

<form method="post">

 <button name="clear" type="submit">Clear Messages</button>

</form>

</body>

</html>'''

 return page.format(all_messages)

 Create a list of strings separated by the

 Placeholder for the list of messages

Make a webpage from Python code
We’ve seen that a web server can send the contents of a file back to the browser client. It can
also create HTML (HyperText Markup Language) text and send this back. The make_page
method constructs a page of HTML that contains the input text area as well as the buttons. It
also contains all the messages that have been entered. You might have some questions.

Question: How does this method create a list of messages?

Answer: The HTML format needs to be told when to end a line of text displayed on a
webpage. The HTML command to do this is
 (which is short for “line-break”). The
make_page method uses join (which we first saw in Chapter 10 when we used it to make
a string containing a list of Time Tracker sessions) to create a string containing a list of
messages separated by the
 command.

Question: How does this method insert the message list into the HTML that describes
the page?

Answer: The method uses Python string formatting. It contains the placeholder {0}
for a value to be inserted into the page. The string containing the messages, which was
created using join, is entered as the value.

CODE ANALYSIS

The final element of the application that we need to implement is the Clear button,
which can be used to clear all the elements in the message list. We can add a clear
behavior to the do_POST method by checking for certain elements in the query string
returned by the browser.

if 'clear' in query_strings:

 messages.clear()

elif 'message' in query_strings:

 message = query_strings['message'][0]

 messages.append(message)

The in operator returns True if a given dictionary contains a particular key. The code
above checks to see if the clear entry is in the dictionary. If you look in the HTML
returned by the make_page method above, you’ll see that the “Clear Messages” button
has been given the name clear.

 Has the user clicked on Clear?
 If Clear clicked, clear the messages

 Has the user clicked on Save Message?
If Save Message clicked, save the message

589Create a web server in Python

590 Chapter 15 Python programs as network servers

Host Python applications
on the web
The web applications we’ve created in this chapter have been hosted on our own com-
puters, and we’ve used the special port number 8080. In theory, we could host these
programs on a machine connected to the Internet and make them available for any-
one to use. However, while writing our own client and server applications has given us
a good understanding of how the web works, it turns out that there are much better
ways to create web applications using Python than by writing them from scratch as
we’ve been doing. Some existing Python frameworks give you a head start in creating
web applications. I strongly recommend that you look at Flask (flask.pocoo.org) and
Django (djangoproject.com) These frameworks hide a lot of the low-level network
access and provide access to databases and components that make it very easy to
produce good-looking websites underpinned with Python code.

Once you’ve created your Python web application, you will need to find a place on the
Internet to host it so that it’s available to your users. Find out more about how to use
Azure to host your applications at https://azure.microsoft.com/en-us/develop/python/.

What you have learned
In this chapter, you discovered how to create Python programs that serve out webpages
in response to requests from web browsers. You looked at the HTTP protocol used to
manage web requests and saw that there are numerous web requests, including the
GET request, to load a page. You saw that the POST request is used to post data back to a
server. You saw that the server response contains a status line, a header element, and a
content element. You discovered that Python provides a helper class called HTTPServer
that can manage a web server and also a class BaseHTTPRequestHandler that can be
used as the starting point for making programs that respond to web requests.

You created a simple message board application that responds to GET and POST
requests and learned that the basis of web applications is creating programs that
respond to these and other requests from the browser.

Here are some points to ponder about Python and web servers.

Is this how webpages work?

The original world wide web worked in the same manner as the programs we created
in this chapter. A web server delivered pages of data (which were loaded from files of

http://flask.pocoo.org
http://djangoproject.com
https://azure.microsoft.com/en-us/develop/python/

591What you have learned

text) in response to requests from a browser. However, the web today is slightly more
complicated. Modern webpages contain program code, usually written in a language
called JavaScript. The program code in the webpages interacts with the user and
sends requests to programs running on the server. The actual layout and appearance
of webpages that the user sees are expressed using “style sheets” that are acted on by
the browser when a page is displayed. However, a solid understanding of the concepts
described in this chapter and Chapter 14 will serve as a very good starting point for
web development.

Can a web server determine what kind of client program is reading the webpage?

Yes. The header sent by the browser contains details of the browser type and even the
kind of computer and operating system being used.

Can a web server have a conversation with a user?

You can think of a request from a web browser as a question. The server then provides
the answer; however, this is not a conversation. Each question and answer is an indi-
vidual transaction. When two people are talking, they will establish a context for their
conversation. If you and I were talking about a particular type of computer and you
asked me, “How fast is it?” I’d remember that we were talking about computers and give
the appropriate answer. HTTP does not work on the basis of a conversation like this.

However, websites can use “cookies” to establish a conversation with a user. A cookie
is a tiny piece of data that the web server gives the browser. The cookie is stored on
the client computer, and at a later time the server can request the cookie so that it
can retrieve context information. Cookies are used to implement things like shopping
carts, and to allow a website to discover the identity of a user. However, they are also
somewhat contentious in that they allow websites to track users in ways that the user
might not be aware of.

How can I make my website secure?

The webpages we’ve created so far have been insecure. The messages exchanged
between the browser and the server are sent as plain text. The free program Wire-
shark, which you can download from www.wireshark.org, can be used to capture and
view network messages.

To counter against network eavesdroppers, modern browsers and servers encrypt the
data they’re transferring. Encryption is the process of converting the plain text mes-
sages into data that only makes sense when it has been decrypted by the receiver.

Encrypted websites use the protocol name https (rather than http) and they also
connect via port 443 rather than port 80. If you want to create a secure, web-based
application, you should look at the two previously suggested frameworks, Flask and
Django, as they provide support for these kinds of sites. These also provide support
for user authentication.

http://www.wireshark.org

16
Create games
with pygame

Start pygame and draw some lines
The best way to understand how pygame works is to start it up and draw something. Open
the Python Command Shell in IDLE to get started. Before we can use pygame in a program,
we need to import it; enter the statement below and press Enter:

>>> import pygame

Once we’ve imported the pygame module, we can start using the functions and classes it
contains. The pygame framework needs to be set up before you can use it to display the
items in your game. A game program does this by calling the init function in the pygame
module, as shown here:

>>> pygame.init()

When you press Enter, the init function sets up the different pygame elements, each of
which performs a specific task when the game is running. Elements read user input, make
sounds, and so on. The init function returns a tuple that tells you how many elements have
been successfully initialized, and how many have failed to initialize. If an element fails to
initialize, pygame might not have been installed correctly. However, most games ignore this
value and assume that all is well.

>>> pygame.init()

(6, 0)

MAKE SOMETHING HAPPEN

594 Chapter 16 Create games with pygame

Getting started with pygame
In this section, we’ll get started with pygame, and we’ll create some shapes and display
them on the screen. The free pygame library contains lots of Python classes you can
use to create games. The snaps functions we used in the early chapters of this book
were written using pygame, so you should have already loaded pygame onto your
computer (see Chapter 3 for instructions).

Note that the pygame library makes use of tuples to create single-data items that
contain colors and coordinates that describe items in the games. If you’re not sure
what a tuple is, read the description of tuples in Chapter 8 before you work through
the following “Make Something Happen.”

The display above shows that six modules have been set up correctly and that none have
failed to initialize. If you see any failures—in other words, if the second value in the tuple is
any value other than zero—you should make sure that pygame has been properly installed.

Next, we need to create a drawing surface. A drawing surface has a specific size, which is set
when we create it. The size is given in pixels (a pixel is the size of a dot on the display). The
more pixels you have, the better quality the display. You also find pixel dimensions when
talking about camera and video screen resolution. We’ll use a screen size of 800 pixels wide
and 600 pixels high. We can use a tuple to create a surface as follows:

>>> size = (800, 600)

Remember that a tuple is a way of grouping a number of items. You can find out more about
them in Chapter 8. Once we have the tuple that describes the size of the game screen, we can
use this value as an argument to the function that creates a pygame drawing surface.

>>> surface = pygame.display.set_mode(size)

This statement creates the drawing surface, sets the variable surface to refer to it, and then
displays the surface on the screen. You should see the window below appear on your screen.

You can change the title of the drawing window using the following function:

>>> pygame.display.set_caption('An awesome game by Rob')

This function changes the title of the window as shown below.

595Getting started with pygame

Now we can draw things on the surface, so we’ll start by drawing some lines. The line drawing
function in pygame accepts four parameters:

 ● The surface on which to draw

 ● The drawing color

 ● The start position of the line

 ● The end position of the line

Let’s assemble these items. We’ve already created the surface, so we can just use that. The
color of an item in pygame is expressed as a tuple containing three values. We first saw this
mechanism for expressing color in Chapter 3 when we used the snaps framework to draw
text. Each value in the tuple represents the amount of red, green, and blue, respectively. The
lowest level is 0; the highest level is 255. If we want to draw a red line, we can create a tuple
that contains all the red and none of the other two primary colors. Enter the following tuple:

>>> red = (255, 0, 0)

Now we can set the start position of the line. For a given position on the screen, the value of x
specifies how far the position is from the left edge, and the value of y specifies how far down
the screen from the top edge. A specific location is expressed as a tuple containing the values
(x, y). The figure below shows how pygame coordinates work. The important thing to remem-
ber is that the origin, which is the point with the coordinate (0,0) is the top left corner of the
display. Increasing the value of x moves you toward the right of the screen, and increasing the
value of y will move you down the screen.

This might not be how you expect graphics to work. Most graphs that you draw have their
origins in the bottom left, and increasing y moves up. However, placing the origin in the top
left corner is standard practice when drawing graphics on a computer.

Y Coordinate

X Coordinate

596 Chapter 16 Create games with pygame

Bearing this in mind, let’s draw a line from the origin on the screen to the position (500,300).
We can create some tuples that hold these values. Type in these two statements to set the
start and end position of the line.

>>> start = (0,0)

>>> end = (500, 300)

Now we can issue our drawing instruction. Type in the following call to the line function in
the pygame draw module:

>>> pygame.draw.line(surface, red, start, end)

When you press Enter, the line is drawn, and the line function returns a rectangle object that
encloses this line:

>>> pygame.draw.line(surface, red, start, end)

<rect(0, 0, 501, 301)>

We’ll ignore the values returned from the drawing methods. Unfortunately, if you look at the
game window, you won’t see any lines on the screen. Draw operations take place on the back
buffer managed by pygame. We don’t draw directly on the screen because we don’t want the
player to see each individual draw action. Instead, we perform all our drawing operations on
a piece of memory in the computer (called the back buffer). When the drawing is finished, we
copy this piece of memory onto the display memory. The memory that used to be displayed
becomes the new back buffer, and the process starts again.

In pygame, the flip function swaps the display memory and the back-buffer memory. We
need to call flip to make a line appear on the screen, so type the call below and press Enter.

>>> pygame.display.flip()

This call will cause a red line to appear on the game display, as shown on the next page.

597Getting started with pygame

If you don’t want a black background, you can use the fill function to fill the screen with
a chosen color. These three statements create a tuple that describes the color white, fills the
back buffer with white, and then flips the back buffer to display the white screen.

>>> white = (255, 255, 255)

>>> surface.fill(white)

>>> pygame.display.flip()

If you do this, you’ll notice that the red line we created has been erased.

598 Chapter 16 Create games with pygame

We can use these functions to create some nice-looking images. The program below
draws 100 colored lines and 100 colored dots. The program uses functions that create
random colors and positions on the display area.

#EG 16.01 pygame drawing functions

import random The demo uses random numbers

599Getting started with pygame

import pygame

class DrawDemo:

 @staticmethod

 def do_draw_demo():

 init_result = pygame.init()

 if init_result[1] != 0:

 print('pygame not installed properly')

 return

 width = 800

 height = 600

 size = (width, height)

 def get_random_coordinate():

 X = random.randint(0, width-1)

 Y = random.randint(0, height-1)

 return (X, Y)

 def get_random_color():

 red = random.randint(0, 255)

 green = random.randint(0, 255)

 blue = random.randint(0, 255)

 return (red, green, blue)

 surface = pygame.display.set_mode(size)

 pygame.display.set_caption('Drawing example')

 red = (255, 0, 0)

 green = (0, 255, 0)

 blue = (0, 0, 255)

 black = (0, 0, 0)

 yellow = (255, 255, 0)

 magenta = (255, 0, 255)

 cyan = (0, 255, 255)

 white = (255, 255, 255)

 gray = (128, 128, 128)

 # Fill the screen with white

 surface.fill(white)

 # Draw 100 random lines

 for count in range(100):

 The demo uses pygame

 Class to contain our demo program

 Make the method static since we should need to create a demo class
 Method to demonstrate pygame drawing

 Initialize pygame
 If the number of failures is not zero, we have a problem

 Display a message
 Abandon the demonstration

 Set the width of the screen
 Set the height of the screen

 Set the size of the game display

 Function to get a random coordinate
 Get a random X value
 Get a random Y value

 Return a tuple made from X and Y

 Function to get a random color
 Get a random red value

 Get a random green value
 Get a random blue value

 Return a tuple made from red, green, and blue

 Create the game surface
 Set the window caption

 Create some color tuples

600 Chapter 16 Create games with pygame

 start = get_random_coordinate()

 end = get_random_coordinate()

 color = get_random_color()

 pygame.draw.line(surface, color, start, end)

 # Draw 100 dots

 dot_radius = 10

 for count in range(100):

 pos = get_random_coordinate()

 color = get_random_color()

 radius = random.randint(5, 50)

 pygame.draw.circle(surface, color, pos, radius)

 pygame.display.flip()

DrawDemo.do_draw_demo()

When I ran the above program, the display appeared as shown in Figure 16-1:

Figure 16-1 Drawing dots and lines

When you run the program, you’ll get an image that looks similar but will have a com-
pletely different arrangement of lines and circles because your program will get a dif-
ferent sequence of random numbers from the ones produced when I ran the program.

 Flip the drawn elements to the display memory

 Call the do_draw_demo method in the DrawDemo object

601Draw images with pygame

Making art
You could create a program that displays a different pattern every now and then. You could
use the time of day and the current weather conditions to determine what colors to use in the
pattern and create a display that changes throughout the day (perhaps with bright primary
colors in the morning and more mellow and darker colors in the evening). If the weather is
warm, the colors could have a red tinge, and if it’s colder, you could create colors with more
blues. Remember that you can create any color you like for your graphics by choosing the
amount of red, green, and blue it should contain.

MAKE SOMETHING HAPPEN

Draw images with pygame
Pygame can also draw images on the screen. The images are loaded from files stored on
your computer. You’ve already used the display_image function from the snaps library
to draw images; now you’ll discover how to use pygame to load and display images.

Image file types
There are a number of different formats for storing pictures on computers. When
working with Pygame, your pictures should be in one of these two formats:

 ● PNG—The PNG format is lossless, meaning it always stores an exact version of the
image. PNG files can also have transparent regions, which is important when you
want to draw one image on top of another.

 ● JPEG—The JPEG format is lossy, meaning the image is compressed in a way that
makes it much smaller, but at the expense of precise detail.

The games you create should use JPEG images for the large backgrounds and PNG
images for smaller objects drawn on top of them.

If you have no usable pictures of your own, you can use the ones I’ve provided with the
sample files for this chapter, but the games will work best if you use your own pictures.

Figure 16-2 shows my picture of the cheese we’ll be using in the game that we will
create. In the game, the player will control the cheese and use it to catch crackers
around the screen. You can use another picture if you wish. In fact, I strongly advise
that you do. I’ve saved the image in the PNG file format with a width of 50 pixels,
which will work with the size of the screen we’re using.

602 Chapter 16 Create games with pygame

Figure 16-2 The cheese

If you need to convert images into the PNG format, you can load an image using the
Microsoft Paint program and then save it in this format. With Paint, you can also scale
and crop images if you want to reduce the number of pixels in the image. For more
advanced image manipulation, I recommend the program Paint.Net, which is free
here: www.getpaint.net. Another great image manipulation program is Gimp, which
is available for most machines. You can download Gimp from www.gimp.org.

Load an image into a game
The pygame library contains a function called load that loads an image. The image to
be loaded is identified by its file name. The load function searches the local folder for
the file. In other words, it looks in the folder from which the program is running. We
saw this behavior in Chapter 8 when we wrote programs to store and load data using
files. The statement below loads an image from a file. The variable cheeseImage is set
to refer to the image that’s been loaded.

cheeseImage = pygame.image.load('cheese.png')

Now that we have an image loaded, we can draw it on the display. When an image
is drawn, the data that describes the image is copied into the memory used for the
display. Game developers call this blitting the graphics data onto the screen. The pyg-
ame library contains a method called blit that’s used to copy an image into display
memory. The blit method requires two pieces of information to work:

 ● The image to be drawn

 ● The coordinates on the screen where the image is to be blitted

http://www.getpaint.net
http://www.gimp.org

603Draw images with pygame

Let’s put our cheese image at the top left corner of the display. The statement below
creates a tuple that describes this position. The values of the x and y coordinates are
both zero.

cheesePos = (0,0)

We can now call the blit method to actually draw the cheese. The blit method is
provided by the display surface that we created when our game program started.

surface.blit(cheeseImage, cheesePos)

The complete program that draws the cheese on the screen can be found below:

EG16-02 Image Drawing

import pygame

class ImageDemo:

 @staticmethod

 def do_image_demo():

 init_result = pygame.init()

 if init_result[1] != 0:

 print('pygame not installed properly')

 return

 width = 800

 height = 600

 size = (width, height)

 surface = pygame.display.set_mode(size)

 pygame.display.set_caption('Image example')

 white = (255, 255, 255)

 surface.fill(white)

 cheeseImage = pygame.image.load('cheese.png')

 cheesePos = (0,0)

 surface.blit(cheeseImage, cheesePos)

 pygame.display.flip()

ImageDemo.do_image_demo()

 Initialize pygame

 End the method if pygame fails
to start

 Set the size of the display

 Get the pygame drawing surface

 Sets up the pygame display

 Clear the screen to white

 Load the cheese image
 Set the cheese position to the top left corner of the screen

 Draw the cheese
 Flip the display memory so that the cheese is displayed

604 Chapter 16 Create games with pygame

When we run this program, it draws some cheese on the screen as shown in
Figure 16-3. Note that the drawing position for an image when we blit it onto the
screen is the top left corner of that image.

Figure 16-3 Cheese on the screen

Make an image move
The blit function is given the draw position for an image. We can make an image
appear to move by repeatedly drawing the image at different positions.

EG16-03 Moving cheese

cheeseX = 40

cheeseY = 60

clock = pygame.time.Clock()

for i in range(1,100):

 clock.tick(30)

 surface.fill((255,255,255))

 cheeseX = cheeseX + 1

 cheeseY = cheeseY + 1

 cheesePos = (cheeseX,cheeseY)

 surface.blit(cheeseImage, cheesePos)

 pygame.display.flip()

 Set the start position for the cheese

 Create a pygame clock instance

 Move the cheese 100 times
 Pause the game so that we have 30 frames per second

 Fill the screen with white
 Increase the x position of the cheese
 Increase the y position of the cheese

 Create a cheese position tuple
 Blit the cheese onto the screen

 Flip to the back buffer to update the display

Move an image
We can investigate the way that games make objects appear to move by using the EG16-03
Moving cheese program. When you use IDLE to run it, you should find that the cheese
moves majestically down the screen for a while and then stops. The speed of the movement
is controlled by the frame rate of the game. The frame rate is the rate at which the screen is
redrawn, expressed as the number of frames per second (fps). The pygame Clock class pro-
vides a tick method that is given the number of frames per second required by the game. The
program creates a new clock before it starts moving the cheese around.

clock = pygame.time.Clock()

The Clock class provides a set of time management methods that games can use. We’ll use
the tick method that allows us to make the game run at a constant speed. Without the clock,
our game would run as fast as Python can execute the program, which would be impossible
to play.

clock().tick(30)

The tick method will pause the game until the start of the next frame “slot.” Find the above
statement in the program and change the value from 30 to 60. The program will now update
the screen 60 times per second. Run the program, and you’ll find that the cheese moves twice
as fast as it did before because the tick method is now allowing 60 frames per second.

If you change the frame rate to 5 (5 frames per second), you’ll find that the cheese moves
slowly and you’ll be able to see each movement.

A player will get a good game experience if the game updates at 60 frames per second.
Games on smaller devices—for example, mobile phones and tablets—might use lower frame
rates to save battery power.

MAKE SOMETHING HAPPEN

605Draw images with pygame

Investigate events in pygame
We can look at how events work in pygame by creating some events and seeing the results.
Open the Python IDLE Command Shell and type in the following statements to create a
pygame window:

>>> import pygame

>>> pygame.init()

(6, 0)

>>> size = (800, 600)

>>> surface = pygame.display.set_mode(size)

Now use your mouse to click in the window that pygame has opened and press a few keys.
Each key press will generate an event that will be captured by pygame. Now we can create a
loop to look at the events that have been stored. Go back to IDLE and enter the following:

>>> for e in pygame.event.get():

 print(e)

The get method returns a collection of events. This loop will print all the events in the
pygame event queue. When you enter an empty line after the print statement, you’ll see
all the event information:

MAKE SOMETHING HAPPEN

606 Chapter 16 Create games with pygame

Get user input from pygame
Now that we can move items around the screen under program control, the next thing
we need is a way that a player can interact with the game. A game receives input from
the user by means of pygame events. An event is a user action—for example, pressing
a keyboard key or moving the mouse. We first saw these kinds of events when we
created a graphical user interface using Tkinter in Chapter 13. When we wanted to
receive events in Tkinter, we bound a method to an event. When the event occurred,
the method was called.

In pygame, events are managed differently. While a pygame program is running, the
pygame system captures input events and places them in a queue. The game program
must check the event queue regularly to see if there are any actions to which the
program must respond. The events we’re interested in are keyboard events generated
when a key is pressed or released.

>>> for e in pygame.event.get():

 print(e)

<Event(17-VideoExpose {})>

<Event(16-VideoResize {'size': (800, 600), 'w': 800, 'h': 600})>

<Event(1-ActiveEvent {'gain': 0, 'state': 1})>

<Event(2-KeyDown {'unicode': 'r', 'key': 114, 'mod': 0, 'scancode': 19})>

<Event(3-KeyUp {'key': 114, 'mod': 0, 'scancode': 19})>

<Event(2-KeyDown {'unicode': 'o', 'key': 111, 'mod': 0, 'scancode': 24})>

<Event(3-KeyUp {'key': 111, 'mod': 0, 'scancode': 24})>

<Event(2-KeyDown {'unicode': 'b', 'key': 98, 'mod': 0, 'scancode': 48})>

<Event(3-KeyUp {'key': 98, 'mod': 0, 'scancode': 48})>

<Event(1-ActiveEvent {'gain': 1, 'state': 1})>

>>>

Each event is described by a dictionary that holds information about the event. If you look
through the events above, you’ll see that the R, O, and B keys have been pressed and released
in turn.

As the game runs, the event queue must be checked to see if any commands have
been entered that should cause objects on the screen to move. We want the cheese to
move while an arrow key is held down and then stop moving when the key is released.
The code below does this. Also, this code contains a test that causes the game to end
when the player presses the Escape (Esc) key.

EG16-04 Steerable cheese

cheeseX = 40

cheeseY = 60

cheeseYSpeed = 2

cheeseMovingUp = False

cheeseMovingDown = False

clock = pygame.time.Clock()

while True:

 clock().tick(60)

 for e in pygame.event.get():

 if e.type == pygame.KEYDOWN:

 if e.key == pygame.K_ESCAPE:

 pygame.quit()

 return

 Set the cheese’s initial position
 Set the speed of the cheese movement

 Cheese is not moving up
 Cheese is not moving down

 Create a clock
 Repeatedly perform the game loop

 Wait for the next frame start
 Work through the events

 Does the event describe a key-down event?
 Is the key the Escape key?

 Shut down pygame
 If Escape has been pressed, exit the game loop

607Get user input from pygame

Game loops
The code above is an example of a “game loop.” You may have some questions about it.

Question: What is the variable e used for in the program?

Answer: The variable e contains each event that the game loop is checking. The game is
interested only in events generated when a key is pressed or released. When a key press
is detected, the program checks to see which key was pressed. If the key is the Up Arrow,
the code sets the flag to indicate that the cheese should move up; if the key is the Down
Arrow, the code sets the flag to indicate that the cheese should move down. The game
loop also contains tests that will clear the flag if a key is released.

Question: Why does the cheese move when I hold a key down?

Answer: Remember that the statements in the game loop are being repeated 60 times a
second. So, every sixtieth of a second, the program is updating the position of the cheese.
If a key is down, the cheese will be moved each time around the game loop. Currently, the
cheeseYspeed is 2, which means that in a second the cheese will move 120 pixels.

Question: How do we change the speed of the cheese?

Answer: The variable cheeseYspeed gives the speed of the cheese in the y direction (up
and down the screen). If we want to make the cheese move faster, we can increase the
value of this variable.

CODE ANALYSIS

608 Chapter 16 Create games with pygame

 elif e.key == pygame.K_UP:

 cheeseMovingUp = True

 elif e.key == pygame.K_DOWN:

 cheeseMovingDown = True

 elif e.type == pygame.KEYUP:

 if e.key == pygame.K_UP:

 cheeseMovingUp = False

 elif e.key == pygame.K_DOWN:

 cheeseMovingDown = False

 if cheeseMovingDown:

 cheeseY = cheeseY+cheeseYSpeed

 if cheeseMovingUp:

 cheeseY = cheeseY-cheeseYSpeed

 Is the key the Up arrow?
 Set the flag that indicates the cheese is moving up

 Is the key the Down arrow?
 Set the flag that indicates the cheese is moving down

 Does the event describe a key up event?
 Is the key the Up arrow?

 Clear the flag that indicates the cheese is moving up
 Is the key the Down arrow?

 Clear the flag that indicates the cheese is moving down

 Is the cheese moving down?
 Move the cheese down the screen

 Is the cheese moving up?
 Move the cheese up

Question: Why do we increase the value of y to move the cheese down the screen?

Answer: This is because the coordinate system used by pygame places the origin (the
point where the values of x and Y are zero) at the top of the screen. Increasing the value
of y will move the cheese down the screen.

Question: What would happen if the player pressed both the Up and the Down Arrow keys
at the same time?

Answer: The cheese would be moved both up and then down again when it was
updated. The result of this would be that the cheese would not appear to move, which is
what we want the game to do.

Question: What would happen if the player moved the cheese right off the screen?

Answer: You can run the sample program to find out what happens. Drawing an image
off the screen will not cause the game program to fail, but the object will not be visible.
If we want to stop the cheese from moving off the screen, we will need to add code to
make sure that the cheese is never positioned off the screen.

Question: What does the pygame.quit() method do?

Answer: The pygame.quit() method is called when the user presses the Escape key to
finish a game; it closes pygame and causes the game window to be closed.

Create game sprites
The game we’ll create will display three different object types on the screen:

 ● Cheese—The player will steer the cheese around the screen.

 ● Crackers—The player will try to capture the cheese on the cracker.

 ● Killer tomato—The tomato will chase the cheese.

Each of these screen objects is called a sprite. You can think of a sprite as an image
that is part of the game display. We will create a Sprite class that has an image drawn
on the screen, a position on the screen, and a set of behaviors. Each sprite will do the
following things:

 ● Draw itself on the screen.

 ● Update itself. If the sprite is the cheese, it will move in response to player input; if
the sprite is the killer tomato, it will chase the cheese.

 ● Reset itself. When we start a new game, we must put the sprite in its starting position.

609Create game sprites

610 Chapter 16 Create games with pygame

Sprites might have other behaviors, too, but these are the fundamental things that a
sprite must do. We can put these behaviors into a class:

class Sprite:

 '''

 A sprite in the game. Can be subclassed

 to create sprites with particular behaviors

 '''

 def __init__(self, image, game):

 '''

 Initialize a sprite

 image is the image to use to draw the sprite

 default position is origin (0,0)

 game is the game that contains this sprite

 '''

 self.image = image

 self.position = [0, 0]

 self.game = game

 self.reset()

 def update(self):

 '''

 Called in the game loop to update

 the status of the sprite.

 Does nothing in the superclass

 '''

 pass

 def draw(self):

 '''

 Draws the sprite on the screen at its

 current position

 '''

 self.game.surface.blit(self.image, self.position)

 def reset(self):

 '''

 Called at the start of a new game to

 reset the sprite

 '''

 pass

 This will be the superclass for all sprites in the game

 Called to set up the values in a sprite

 Store the image in the sprite
 Set the position in the sprite to the top left corner

 Store the game reference in the sprite
 Reset the sprite

 Called when a sprite is to be updated

 Called to ask a sprite to draw itself

 Called to ask a sprite to reset itself

Sprite superclass
The code above defines the superclass for all the sprites in the game. You may have some
questions about it.

Question: What is the game parameter used for in the initializer?

Answer: When the game creates a new sprite, it must tell the sprite which game it is
part of because some sprites will need to use information stored in the game object.
For example, if the cheese manages to capture a cracker, the score value will need to
be updated.

Programmers say that the sprite class and the game class will be tightly coupled. Changes
to the code in the CrackerChaseGame class might affect the behavior of sprites in the
game. If the programmer of the CrackerChaseGame class changes the name of the vari-
able that keeps the score from score to game_score, the Update method in the Cheese
class will fail when the player captures a cracker. A lot of coupling between classes in a
large system is a bad idea, but in the case of our game it makes the development much
easier, so I think it’s reasonable to make the program work in this way.

Question: Why are the update and reset methods empty?

Answer: You can think of the Sprite class as a template for subclasses. Some of the
game elements will need methods to implement update and reset behaviors. The
cheese will need a reset method that places it in the middle of the screen at the start of
the game. The cheese will need an update method that moves it around the screen. The
cheese class will be a subclass of Sprite, and adds its own version of these methods.

Question: How does the draw method work?

Answer: The draw method is called to ask the sprite to draw itself on the screen.

 def draw(self):

 '''

 Draws the sprite on the screen at its

 current position

 '''

 self.game.surface.blit(self.image, self.position)

The game that the sprite is part of contains an attribute called surface, which is the
pygame drawing surface for this game. The above method finds the game attribute from
the sprite that’s drawing itself. The game attribute was set when the sprite was created;
the game attribute uses the game’s surface property to blit the sprite image onto
the screen.

CODE ANALYSIS

611Create game sprites

612 Chapter 16 Create games with pygame

The Sprite class doesn’t do much, but it can be used to manage the background
image for this game. The game will take place on a “tablecloth” background. We can
think of this as a very large sprite that fills the screen. We can now make our first ver-
sion of the game that contains a game loop that just displays the background sprite.

class CrackerChase:

 '''

 Plays the amazing cracker chase game

 '''

 def play_game(self):

 '''

 Starts the game playing

 Will return when the player exits

 the game.

 '''

 init_result = pygame.init()

 if init_result[1] != 0:

 print('pygame not installed properly')

 return

 self.width = 800

 self.height = 600

 self.size = (self.width, self.height)

 self.surface = pygame.display.set_mode(self.size)

 pygame.display.set_caption('Cracker Chase')

 background_image = pygame.image.load('background.png')

 self.background_sprite = Sprite(image=background_image,

 game=self)

 clock = pygame.time.Clock()

 while True:

 clock.tick(60)

 for e in pygame.event.get():

 if e.type == pygame.KEYDOWN:

 if e.key == pygame.K_ESCAPE:

 pygame.quit()

 return

 self.background_sprite.draw()

 pygame.display.flip()

 Class that contains the entire game

 Called to play the game

 Initialize pygame

 Quit if pygame is not installed on this machine

 Set the width and height of the game display
 Create a tuple that defines the screen size

 Create the drawing surface
 Set the caption for the game screen

 Load the background image
 Create the background sprite

 Tell the sprite the game it is part of
 Create the game for the clock

 Game loop that runs forever
 Ensure the game updates 60 times per second

 Get the events from pygame
 Is the event a key press?

 If the key pressed is Escape, return from the game method

 Close the game screen
 Return from the game method

 Ask the background to draw itself
 Flip the back buffer to the front

Game class
The code above defines the class that will implement our game. You might have some ques-
tions about it.

Question: How does the game pass a reference to itself to the sprite constructor?

Answer: We know that when a method in a class is called, the self parameter is called
to reference the object within which the method is running. We can pass self into other
parts of the game that need it:

self.background_sprite = Sprite(image=background_image, game=self)

The code above makes a new Sprite instance and sets the value of the game argument
to self so that the sprite now knows which game it is part of.

Question: Why does the game call the draw method on the sprite to draw it? Can’t the game
just draw the image held inside the sprite?

Answer: This is a very important question, and it comes down to responsibility. Should the
sprite be responsible for drawing on the screen, or should the game do the drawing? I think
drawing should be the sprite’s job because it gives the developer a lot more flexibility.

For instance, adding smoke trails to some of the sprites in this game by drawing “smoke”
images behind the sprite would be much easier to do if I could just add the code into the
“smoky” sprites rather than the game having to work out which sprites needed smoke
trails and draw them differently.

Question: Does this mean that when the game runs the entire screen will be redrawn each
time, even if nothing on the screen has changed?

Answer: Yes. You might think that this is wasteful of computer power, but this is how
most games work. It is much easier to draw everything from scratch than it is to keep
track of changes to the display and only redraw parts that have changed.

CODE ANALYSIS

613Create game sprites

614 Chapter 16 Create games with pygame

The code below shows how we would start a game running:

EG16-05 background sprite

game = CrackerChase()

game.play_game()

Add a player sprite
The player sprite will be a piece of cheese that is steered around the screen. We’ve seen
how a game can respond to keyboard events; now we’ll create a player sprite and get the
game to control it. The Cheese class below implements the player object in our game.

class Cheese(Sprite):

 '''

 Player-controlled cheese object that can be steered

 around the screen by the player

 '''

 def reset(self):

 '''

 Reset the cheese position and stop any movement

 '''

 self.movingUp = False

 self.movingDown = False

 self.position[0] = (self.game.width - self.image.get_width())/2

 self.position[1] = (self.game.height - self.image.get_height())/2

 self.movement_speed=[5,5]

 def update(self):

 '''

 Update the cheese position and then stop it moving off

 the screen.

 '''

 if self.movingUp:

 self.position[1] = self.position[1] - (self.movement_speed[1])

 if self.movingDown:

 self.position[1] = self.position[1] + (self.movement_speed[1])

 Create a game instance
 Start the game running

 Override the reset method in the sprite superclass

 Center the cheese across the screen
 Stop the cheese moving up

 Stop the cheese moving down

 Set the initial move speed for the cheese
 Center the cheese down the screen

 Center the cheese across the screen

 If we are moving up, move the cheese up

 If we are moving down, move the cheese down

Player sprite
The code above defines the Cheese sprite. I’ve left off some of the movement methods to
save space in the book, but you can find them all in the example program EG16-06 Cheese
Player in the sample code for this chapter. You might have some questions about it.

Question: Why does the Cheese class not have an __init__ or draw method?

Answer: The Cheese class is a subclass of the Sprite class we created earlier, which
means the Cheese class inherits those two methods from the Sprite class.

Question: What do the get_width and get_height methods do?

Answer: These methods are provided by the pygame image class to allow a game to
determine the dimensions of an image. We use them to make sure that the player cannot
move the cheese off the screen.

CODE ANALYSIS

615Create game sprites

 if self.position[0] < 0:

 self.position[0]=0

 if self.position[1] < 0:

 self.position[1]=0

 if self.position[0] + self.image.get_width() > self.game.width:

 self.position[0] = self.game.width - self.image.get_width()

 if self.position[1] + self.image.get_height() > self.game.height:

 self.position[1] = self.game.height - self.image.get_height()

 def StartMoveUp(self):

 'Start the cheese moving up'

 self.movingUp = True

 def StopMoveUp(self):

 'Stop the cheese moving up'

 self.movingUp = False

 'Other cheese movement methods go here...'

 Stop movement off the left edge of the screen

 Stop movement off the top of the screen
 Stop movement off the right of the screen

 Stop movement off the bottom of the screen

 Called to start the cheese moving up the screen

 Set the up movement flag to True

Called to stop the cheese moving up the screen

 Set the up movement flag to False

Screen width

Screen height height
Y Coordinate

widthX Coordinate

The image above shows how this works. The program knows the position of the cheese
and the width and height of the screen. If the x position plus the width of the cheese is
greater than the width of the screen (as it is in the image above), the update method for
the cheese will put the cheese back on the right edge:

if self.position[0] + self.image.get_width() > self.game.width:

 self.position[0] = self.game.width - self.image.get_width()

The position of a sprite is held in a list, with the element at location 0 holding the x
position of the sprite. The sprite can use its reference to the game to get the width of the
screen and the get_width method to obtain the width of the sprite image. Note that in
the above image, the cheese is not moving off the bottom of the screen. Forcing a sprite
to stay on the screen in this way is called clamping the sprite.

The Cheese class also uses the width and the height of the sprite image to position the
cheese in the center of the screen when the cheese is reset.

self.position[0] = (self.game.width - self.image.get_width())/2

self.position[1] = (self.game.height - self.image.get_height())/2

616 Chapter 16 Create games with pygame

617Create game sprites

Control the player sprite
The game class creates an instance of the cheese sprite and uses keyboard events to
trigger message to the sprite to control its movement. Below is the game class code
that does this. If you run the example program EG16-06 Cheese Player, you can see
this in action. The player can move the cheese around the screen, but the cheese will
not move off the edge of the screen.

cheese_image = pygame.image.load('cheese.png')

self.cheese_sprite = Cheese(image=cheese_image, game=self)

clock = pygame.time.Clock()

while True:

 clock.tick(60)

 for e in pygame.event.get():

 if e.type == pygame.KEYDOWN:

 if e.key == pygame.K_ESCAPE:

 pygame.quit()

 return

 elif e.key == pygame.K_UP:

 self.cheese_sprite.StartMoveUp()

 elif e.key == pygame.K_DOWN:

 self.cheese_sprite.StartMoveDown()

 'Other cheese movement key handlers go here...'

 self.background_sprite.draw()

 self.background_sprite.update()

 self.cheese_sprite.draw()

 self.cheese_sprite.update()

 pygame.display.flip()

Add a Cracker sprite
Moving the cheese around the screen is fun for a while, but we need to add some
targets for the player. The targets are crackers the player must use to capture the
cheese. When a cracker is captured, the game score is increased, and the cracker
moves to another random position on the screen. The Cracker sprite is a subclass
of the Sprite class:

 Load the cheese image
 Create a cheese sprite

 Create a clock to control the game

 Start of the game loop
 Ensure that the game runs at 60 frames per second

 Process game events
 Is this a key pressed event?

 Has the Escape key been pressed?
 Shut down the game

 Return from the game method
 Has the Up key been pressed?

 Start the cheese moving up
 Has the Down key been pressed?

 Start the cheese moving down

 Draw the background sprite
 Update the background sprite

 Draw the cheese sprite
 Update the cheese sprite

 Flip the display buffer to make the draw actions visible

618 Chapter 16 Create games with pygame

class Cracker(Sprite):

 '''

 The cracker provides a target for the cheese

 When reset, it moves to a new random place

 on the screen

 '''

 def reset(self):

 self.position[0] = random.randint(0,

 self.game.width-self.image.get_width())

 self.position[1] = random.randint(0,

 self.game.height-self.image.get_height())

The Cracker class is very small because it gets most of its behavior from its superclass,
the Sprite class. It just contains one method, reset, which uses the Python random
number generator to pick a random position for the cracker. We can add it to our
game by creating it and then drawing it in the game loop. The sample program
EG16-07 Cheese and cracker shows how this works.

Figure 16-4 shows the game in action. The figure shows that there are at least two
problems with this game. First, the cracker seems to be on top of the cheese. If the
cheese is going to “capture” the cracker, it would look better if the cheese appeared
to be “on top” of the cracker. We can fix this by changing the order in which the game
elements are drawn. The pygame framework places images on the screen in the order
they are drawn. The second problem with this game is that it looks a bit boring. I think
we need more crackers to serve as additional targets.

Figure 16-4 Cheese and cracker

619Create game sprites

Add lots of sprite instances
We could increase the number of crackers by creating more individual cracker
instances:

cracker_image = pygame.image.load('cracker.png')

self.cracker1 = Cracker(image=cracker_image, game=self)

self.cracker2 = Cracker(image=cracker_image, game=self)

self.cracker3 = Cracker(image=cracker_image, game=self)

The code above would create three crackers called cracker1, cracker2, and cracker3.
This would work, but it would be hard to manage because the game would have to
update and draw each of these sprites individually. It would turn into a real problem
when game players request 50 crackers on the screen. Whenever we’ve had this prob-
lem in the past, we have used a collection of some kind (usually a list) to solve it. We
can do this here, too.

self.sprites = []

cracker_image = pygame.image.load('cracker.png')

for i in range(20):

 cracker_sprite = Cracker(image=cracker_image,game=self)

 self.sprites.append(cracker_sprite)

The statements above create 20 cracker sprites. The game now contains a list, called
sprites, which holds all the sprites in the game.

for sprite in self.sprites:

 sprite.update()

for sprite in self.sprites:

 sprite.draw()

Above are the statements that we can use in the game loop to update and draw the
cracker sprites. In the sample game EG16-08 Cheese and crackers, you can see how
this works. This version of the game also adds the background and the cheese objects
to the sprites list so that everything in the game is drawn and updated by the above
two loops. Figure 16-5 shows the game now. If we want to have even more crackers,
we just need to change the limit of the range in the for loop that creates them.

 Create a list to hold all the sprites in the game

 Load the cracker image

 Create a for loop that goes around 20 times
 Create a Cracker sprite

 Add the sprite to the list of sprites

620 Chapter 16 Create games with pygame

Figure 16.5 Cheese and multiple crackers

Catch the crackers
The game now has lots of crackers and a piece of cheese that can chase them. But
nothing happens when the cheese “catches” a cracker. We need to add a behavior to
the Cracker that detects when the cracker has been “caught” by the cheese. A cracker
is caught by the cheese when the cheese moves “on top” of it. The game can detect
when this happens by testing that rectangles enclosing the two sprites intersect.

Figure 16-6 shows the cheese in the process of catching a cracker. The rectangles
around the cheese and cracker images are called bounding boxes. When one bound-
ing box moves “inside” another, we say that the two are intersecting. When the cracker
updates, it will test to see whether it intersects with the cheese.

621Create game sprites

Figure 16-6 Intersecting sprites

Figure 16-7 shows how the test will work. In this figure, the two sprites are not
intersecting because the right edge of the cheese is to the left of the left edge of the
cracker. In other words, the cheese is too far to the left to intersect with the cracker.
This would also be true if the cheese were above, below, or to the right of the cracker.
We can create a method that tests for these four situations. If any of them are true, the
rectangles do not intersect.

Figure 16-7 Non-intersecting sprites

622 Chapter 16 Create games with pygame

def intersects_with(self, target):

 '''

 Returns True if this sprite intersects with

 the target supplied as a parameter

 '''

 max_x = self.position[0]+self.image.get_width()

 max_y = self.position[1]+self.image.get_height()

 target_max_x = target.position[0]+target.image.get_width()

 target_max_y = target.position[1]+target.image.get_height()

 if max_x < target.position[0]:

 return False

 if max_y < target.position[1]:

 return False

 if self.position[0] > target_max_x:

 return False

 if self.position[1] > target_max_y:

 return False

 # if we get here, the sprites intersect

 return True

The method is an attribute of a Sprite object, which returns True if the sprite inter-
sects with a particular target. We add this method to the Sprite class so that all sprites
can use it. Now we can add an update method to the Cracker class that checks to see
whether the cracker intersects with the cheese:

def update(self):

 if self.intersects_with(game.cheese_sprite):

 self.captured_sound.play()

 self.reset()

 Get the right edge of this sprite
 Get the bottom edge of this sprite

 Get the right edge of
the target

 Get the bottom edge
of the target

 Is this sprite to the left?

 Is this sprite underneath?

 Is this sprite to the right?

 Is this sprite above?

 Return True because the sprites intersect

 Have we been captured?
 Play our capture sound effect

 Reset the position of the cracker

623Create game sprites

Add sound
The preceding update method plays a sound effect when a cracker is “captured”
by the cheese. The pygame framework provides a Sound class to manage sound
playback. When an instance of Sound is created, it is given the name of the file that
contains the sound data.

cracker_eat_sound = pygame.mixer.Sound('burp.wav')

The statement above creates a Sound instance called cracker_eat_sound from the
sound file burp.wav. We pass this sound into a Cracker when we create a new instance:

cracker_sprite = Cracker(image=cracker_image, game=self,

 captured_sound=cracker_eat_sound)

For this to work, we must modify the __init__ method in the Cracker to store the
sound in the cracker:

def __init__(self, image, game, captured_sound):

 super().__init__(image, game)

 self.captured_sound = captured_sound

The attribute captured_sound in the Cracker object can be used to play the sound
effect when that cracker is eaten. In the present version of the game, all the crackers
make the same sound when they are eaten, but we could use different sound effects
for each cracker if we wished. The example program EG16-09 Capturing crackers lets
the player capture crackers. When a cracker is captured, the game plays a sound effect
and the cracker moves to a different location.

If you want to create your own sound effects, you can use the program Audacity to
capture and edit sounds. It is a free download from www.audacityteam.org and is
available for most operating systems.

 Store the capture sound in the cracker

 Call the constructor in the superclass
 Set the sound attribute of the cracker

http://www.audacityteam.org

Bad collision detection

There are some problems with using bounding boxes to detect collisions. The image above
shows that the cheese and the cracker are not colliding, but the game will think that they are.
This should not be too much of a problem for our game. It makes it easier for the player, as
they don’t always have to move the cheese right over the cracker to score a point. However,
the player might have grounds for complaint if the game decides they have been caught by a
killer tomato because of this issue. There are three ways to solve this problem:

 ● When the bounding boxes intersect (as they do above), we could check the intersecting
rectangle (the part where the two bounding boxes overlap) to see if they have any pixels
in common. Doing so provides very precise collision detection, but it will slow down
the game.

 ● Alternatively, we could detect collisions using distance rather than intersection, which
works well if the sprites are mostly round.

 ● The final solution is the one I like best. I could make all the game images rectangular, so
the sprites fill their bounding boxes and the player always sees when they have collided
with something.

WHAT COULD GO WRONG

624 Chapter 16 Create games with pygame

625Create game sprites

PROGRAMMER’S POINT

When you write a game, you control the universe
One of the reasons I like writing games so much is that I have complete control of what I’m
making. If I’m solving a problem for a customer, I must deliver certain outcomes. But in a
game, I can change what it does if I find a problem. I can also redefine the gameplay if I
make a mistake in the program. Sometimes, this produces a more interesting behavior than
the one I was trying to create. This has happened on a number of occasions.

Add a killer tomato
Currently, the game is not much of a game. There is no jeopardy for the player. When
you make a game, you set up something that the player is trying to achieve. Then
you add some elements that will make this difficult for them. In the case of the game
“Cracker Chase,” I want to add “killer tomatoes” that will relentlessly hunt down the
player. As the game progresses, I want the player to be chased by increasingly more
tomatoes until the game becomes all about survival. The tomatoes will be interesting
because I’ll give them artificial intelligence and physics.

Add “artificial intelligence” to a sprite
Artificial intelligence sounds very difficult to achieve, but in the case of this game, it is
actually very simple. At its heart, artificial intelligence in a game simply means making
a program that would behave like a person in that situation. If you were chasing me,
you’d do this by moving toward me. The direction you would move would depend on
my position relative to you. If I were to your left, you’d move left, and so on. We can
put the same behavior into our killer tomato sprite:

if game.cheese_sprite.position[0] > self.position[0]:

 self.x_speed = self.x_speed + self.x_accel

else:

 self.x_speed = self.x_speed - self.x_accel

if game.cheese_sprite.position[1] > self.position[1]:

 self.y_speed = self.y_speed + self.y_accel

else:

 self.y_speed = self.y_speed - self.y_accel

This condition shows how we can make an intelligent killer tomato. It compares the
x positions of the cheese_sprite and the tomato. If the cheese is to the right of the

 Is the player to the
right of the tomato?

 Accelerate to the right

 Accelerate to the left

 Is the player below the tomato?
 Accelerate down

 Accelerate up

626 Chapter 16 Create games with pygame

tomato, the x speed of the tomato is increased to make it move to the right. If the
cheese is to the left of the tomato, it will accelerate in the other direction. The code
above then repeats the process for the vertical positions of the two sprites. The result is
a tomato that will move intelligently toward the cheese. Note that this means we could
make a “cowardly” tomato that runs away from the player by making the acceleration
negative so that the tomato accelerates in the opposite direction of the cheese.

PROGRAMMER’S POINT

Using “artificial intelligence” makes games much more interesting
There is a lot of debate as to whether “game artificial intelligence” is actually “proper” arti-
ficial intelligence. You can find a very good discussion of the issue here: https://software.
intel.com/en-us/articles/designing-artificial-intelligence-for-games-part-1. I personally
think that you can call this kind of programming “artificial intelligence” because players of
a game really do react as if they are interacting with something intelligent when faced with
something like our killer tomato. You can make a game much more compelling by giving
game objects the kind of intelligence described above.

Add physics to a sprite
Each time the game updates, it can update the position of the objects on the screen.
The amount that each object moves each time the game updates is the speed of the
object. When the player is moving, the cheese’s position is updated by the value 5. In
other words, when the player is holding down a movement key, the position of the
cheese in that direction is being changed by 5. The updates occur 60 times per second
because this is the rate at which the game loop runs. In other words, the cheese would
move 300 pixels (60*5) in a single second. We can increase the speed of the cheese by
adding a larger value to the position each time it is updated. If we used a speed value
of 10, we’d find that the cheese would move twice as fast.

Acceleration is the amount that the speed value is changing. The statements below
update the x_speed of the tomato by the acceleration and then apply this speed to
the position of the tomato.

self.x_speed = self.x_speed + self.x_accel

self.position[0] = self.position[0] + self.x_speed

The initial speed of the tomato is set to zero, so each time the tomato is updated, the
speed (and hence the distance it moves) will increase. If we do this in conjunction with
“artificial intelligence,” we get a tomato that will move rapidly toward the player.

 Add the acceleration to the speed
 Update the position of the sprite

https://software.intel.com/en-us/articles/designing-artificial-intelligence-for-games-part-1
https://software.intel.com/en-us/articles/designing-artificial-intelligence-for-games-part-1

627Create game sprites

If we just allowed the tomato to accelerate continuously, we’d find that the tomato
would just get faster and faster, and the game would become unplayable.

The statement below adds some “friction” to slow down the tomato. The friction value
is less than 1, so each time we multiply the speed by the friction, it will be reduced,
which will cause the tomato to slow down over time.

self.x_speed = self.x_speed * self.friction_value

The friction and acceleration values are set in the reset method for the Tomato sprite:

def reset(self):

 self.entry_count = 0

 self.friction_value = 0.99

 self.x_accel = 0.2

 self.y_accel = 0.2

 self.x_speed = 0

 self.y_speed = 0

 self.position = [-100,-100]

After some experimentation, I came up with the acceleration value of 0.2 and a
friction value of 0.99. If I want a sprite that chases me more quickly, I can increase the
acceleration. If I want the sprite to slow down more quickly, I can increase the friction.
You can have a lot of fun playing with these values. You can create sprites that drift
slowly toward the player and, by making the acceleration negative, you can make
them run away from the player.

PROGRAMMER’S POINT

When you write a game, you can always cheat
When you’re writing a game, you should always start with the simplest, fastest way of get-
ting an effect to work, and then improve it if necessary.

The “physics” that I’m using are not really an accurate simulation of physical objects. The
way that I’ve implemented friction is not very realistic, but it works and gives the player a
good experience. I find it interesting that six or seven lines of Python can make something
that behaves in such a believable way. The Cracker Chase game uses very simple collision
detection, artificial intelligence, and physics, but it is still fun to play. It really feels as if the
tomatoes are chasing you. Making the physics model completely accurate would take a lot
of extra work and would add very little to the gameplay.

 Multiply the speed by the friction

628 Chapter 16 Create games with pygame

Create timed sprites
It’s important that a game be progressive. If the game started with lots of killer
tomatoes, the player would not last very long and would not enjoy the experience. I’d
like each tomato to appear every 5 seconds. We can do this by giving each tomato an
“entry delay” value when we construct it:

tomato_image = pygame.image.load('tomato.png')

for entry_delay in range(300,3000,300):

 tomato_sprite = Tomato(image=tomato_image,

 game=self,

 entry_delay=entry_delay)

 self.sprites.append(tomato_sprite)

This code uses a version of the range function that we haven’t seen before. The first
argument to the range is the start value, which in this case is 300. The second argu-
ment is the upper limit, and the third argument is the “step” between values. This will
give us values of entry_delay that start at 300 and then go up in steps to 2700 (note
that the value 3000 is the limit).

The __init__ method in the Tomato class stores the value of entry_delay and is used
to delay the entry of the sprite:

def update(self):

 self.entry_count = self.entry_count + 1

 if self.entry_count < self.entry_delay:

 return

The update method is called 60 times per second. The first tomato has an entry delay
of 300, which means that it will arrive at 300/60 seconds, which is 5 seconds after the
game starts. The next tomato will appear 5 seconds after that, and so on, up until the
last one. The example program EG16-10 Killer tomato shows how this works. It can
get rather frantic after a few tomatoes have turned up and are chasing you.

 Loop to generate the entry delay values
 Create a new tomato
 Give the tomato the

entry delay value

 Add the tomato to the list of sprites

 Increase the entry counter by 1
 If the entry counter is less than

the delay, return

629Complete the game

Complete the game
We now have a program that provides some gameplay. Now we need to turn this into
a proper game. To do so, we need to add a start screen, provide a way that the player
can start the game, detect and manage the end of the game, and then, because it
adds a lot to the gameplay, add a high score.

Add a start screen
A start screen is where the player will—you guessed it—start the game. Then, when
the game is complete, the game returns to the start screen. We can add a start screen
to the Cracker Chase game by using a flag value to indicate the mode of the game:

def start_game(self):

 for sprite in self.sprites:

 sprite.reset()

 self.score=0

 self.game_running = True

Above is the method that starts a game playing. It resets all the sprites, sets the score
to zero, and sets the game_running flag to True. The game_running flag controls the
behavior of the game loop:

while True:

 clock.tick(60)

 if self.game_running:

 self.update_game()

 self.draw_game()

 else:

 self.update_start()

 self.draw_start()

 pygame.display.flip()

This is the game loop for the game. The code that updates the game and draws it
is now in methods that are called if the game is running. If the game is not running,
methods are called to update and draw the start screen.

 Reset all the sprites

 Clear the game score
 Set the flag to indicate that the game is running

 Repeat game forever
 Keep the frame rate to 60 frames per second

 Is the game active?
 Update the game

 Draw the game

 Update the start screen
 Draw the start screen

 Display the back buffer

630 Chapter 16 Create games with pygame

def update_start(self):

 for e in pygame.event.get():

 if e.type == pygame.KEYDOWN:

 if e.key == pygame.K_ESCAPE:

 pygame.quit()

 sys.exit()

 elif e.key == pygame.K_g:

 self.start_game()

The start screen update behavior checks for two keys:

 ● If the G key is pressed, the start_game method is called to start the game.

If the Escape key is pressed, the method shuts down pygame by calling quit and then
using the exit method from the sys module to end the program.

Use exit to shut down Python
The exit method is in the sys module, which means that the game must import the
module:

import sys

Once we have imported sys, we can call the exit function from the module to exit a
Python program instantly.

sys.exit()

Draw text in pygame
The start screen will display information for the player, as shown in Figure 16-8. The
pygame framework can draw text on the screen. It uses a Font object that is created
when the game starts.

 Work through all the pygame events
 Is the event a key down?

 Is the key the Escape key?
 Quit pygame

 Exit the program

631Complete the game

Figure 16-8 Start screen

self.font = pygame.font.Font(None, 60)

The initializer for the font accepts two parameters—the font design to use and the size
of the font. The statement above specifies None for the font design, which will select
the default pygame font. The size of 60 gives a text size that works well for the game.
To place a message on the screen, the game first renders the text using the font.

text = self.font.render('hello world', True, (255,0,0))

The render method accepts three arguments:

 ● The first is a string that contains the text to be rendered.

 ● The second argument selects aliasing. This technique smooths the edges of the
characters, and you should use it to make your text look nice.

 ● The third argument specifies the color of the text. It contains the amount of red, blue,
and green that the text color should contain. The maximum color intensity is 255.

632 Chapter 16 Create games with pygame

The code above will render “hello world” in bright red.

Once the text has been rendered, the next step is to blit it onto the display. We do this
the same way we blit images.

self.surface.blit(text, (0,0))

The first argument to the blit method is for the text to be drawn; the second argu-
ment is the location on the screen. The statement above would render “hello world”
in the top left corner of the screen. A program can get the width and the height of
rendered text, which can be used to center text on the screen. The CrackerChase class
contains a little method that draws text on the screen:

def display_message(self, message, y_pos):

 '''

 Displays a message on the screen

 The first argument is the message text

 The second argument is the vertical position

 of the text

 The text is drawn centered on the screen

 It is drawn with a black shadow

 '''

 shadow = self.font.render(message, True, (0,0,0))

 text = self.font.render(message, True, (0,0,255))

 text_position = [self.width/2 - text.get_width()/2, y_pos]

 self.surface.blit(shadow, text_position)

 text_position[0] += 2

 text_position[1] += 2

 self.surface.blit(text, text_position)

This method actually draws the text twice. The first time, the text is drawn in black,
and then the text is drawn again in blue. The second time the text is drawn, it is moved
slightly to make it appear that the black text is a shadow.

This method uses the += operator, which can be used to increase the value of a
variable. Rather than writing:

text_position[0] = text_position[0]+2

You can write:

text_position[0] += 2

 Render the text in black
 Render the text in blue

 Calculate the position of the text

 Draw the shadow
 Move the draw position across
 Move the draw position down

 Draw the text

633Complete the game

There are similar operators for subtract (-=), multiply (*=) and divide (/=).

If you look closely at Figure 16-8, you can see that the result of this extra drawing is
that text looks three-dimensional, which makes text stand out on the screen.

PROGRAMMER’S POINT

Don’t worry about making the graphics hardware work for you
You might think it’s rather extravagant to draw all the text on the screen twice just to get a
shadow effect. However, modern graphics hardware is perfectly capable of many thou-
sands of drawing operations per second. I’ve been known to draw text twenty times just
to get a nice blurred shadow effect behind it. If you think something might look good, my
advice is to try it and only worry about performance if the game seems to run very slowly
after you’ve done it.

def draw_start(self):

 self.start_background_sprite.draw()

 self.display_message(message='Top Score: ' + str(self.top_score),y_pos=0)

 self.display_message(message='Welcome to Cracker Chase', y_pos=150)

 self.display_message(message='Steer the cheese to', y_pos=250)

 self.display_message(message='capture the crackers', y_pos=300)

 self.display_message(message='BEWARE THE KILLER TOMATOES', y_pos=350)

 self.display_message(message='Arrow keys to move', y_pos=450)

 self.display_message(message='Press G to play', y_pos=500)

 self.display_message(message='Press Escape to exit', y_pos=550)

Above is the draw_start method for the game, which draws the sprite that contains
the background image and then displays the help messages on the display.

PROGRAMMER’S POINT

Make sure you tell people how to play your game
In my long and distinguished career in computing, I’ve judged quite a few game develop-
ment competitions. I’ve lost count of the number of games that I’ve tried to play and failed
because the game doesn’t tell me what to do. The problem is usually that everyone focuses
on making the game, and not on telling people how to play it. Failing at a game while you
work out which keys you are supposed to press doesn’t make for a very good introduction
to it, so make sure that you make the instructions clear and present them right at the start.

634 Chapter 16 Create games with pygame

End the game
The start screen allows the player to play the game. We’ve seen that the game has two
states, which are managed by the game_running attribute. This attribute is set to True
when the game is running and False when the start screen is displayed. Now we need
to create the code that manages the game_running value. At the start of this section,
we saw that the game contained a method that started the game. The game also
contains a method to end it.

def end_game(self):

 self.game_running = False

 if self.score > self.top_score:

 self.top_score = self.score

The end_game method sets game_running to False. It also updates the top_score
value. If the current score is greater than the highest score so far, it is updated to the
new top score.

PROGRAMMER’S POINT

Adding a high score makes a game much more interesting
Adding a high score to a game makes the game much more compelling. Players will spend
a lot of time trying to beat their previous scores. A good improvement to this game would
be to make it save the high score in a file and load the high score when the game starts.

Detect the game end
The game ends when the player collides with a killer tomato, which is detected in the
update method for the tomato sprite:

def update(self):

 ' position update code for the tomato here'

 if self.intersects_with(game.cheese_sprite):

 self.game.end_game()

We can add more logic to make the game more interesting. We could give the player
a health value that reduces each time he or she collides with a tomato. We could make
the health slowly recover over time. We could even add the traditional “three lives”
that are standard for games like this.

635Complete the game

PROGRAMMER’S POINT

Always make a playable game
Something else I noticed while judging game development competitions was that some
teams would produce a brilliant piece of gameplay but not attach it to a game. You’d start
playing the game and find that it never actually ended. You should make sure that your
game is a complete game from the very start. The game should have a beginning, middle,
and end. As you have seen in this section, it’s easy to do this, but when people start making
a game, they seem to leave it to the last minute to create the game start screen and the
game ending code, so that what they produce is not a game, but more of a technical demo,
which is not quite the same thing. Making your game into a proper game right from the
start also makes it much easier for people to try it and then give you feedback.

Score the game
Each time the cheese collides with a cracker, the game score is increased. The score is
updated in the update method for the cracker sprite:

def update(self):

 if self.intersects_with(game.cheese_sprite):

 self.captured_sound.play()

 self.reset()

 self.game.score += 10

The score is displayed on the screen each time the game display is drawn by the
draw_game method.

def draw_game(self):

 for sprite in self.sprites:

 sprite.draw()

 status = 'Score: ' + str(game.score)

 self.display_message(status, 0)

You can find the completed game in the folder EG16-11 Complete Game. It’s fun to
play for short bursts, particularly if there are a few of you trying to beat the high score.
My highest score so far is 380, but I never was any good at playing video games.

 Update the game score

 Draw all the game sprites

 Assemble the score message
 Display the score at the top of the screen

636 Chapter 16 Create games with pygame

Make a game of your own
The Cracker Chase game can be used as the basis of any sprite-based game you might like
to create. You can change the artwork, create new types of enemies, make the game two-
player, or add extra sound effects. When I said at the start of this book that programming is
the most creative thing you can learn to do, this is the kind of thing I was talking about. You
can create a game called “Closet frenzy” where you are chased around by coat hangers while
you search for a matching sock. You could create “Walrus Space Rescue,” where you must
steer an interplanetary walrus through an asteroid minefield. Anything you can think up, you
can build. However, one word of caution. Don’t have too many ideas. I’ve seen lots of game
development teams get upset because they can’t get all their ideas to work at once. It is much
more sensible to get something simple working and then add things to it later.

MAKE SOMETHING HAPPEN: DEVELOPMENT CHALLENGE

What you have learned
In this chapter, you created a playable game and discovered how the pygame frame-
work lets you work with graphics and sound. You found that a class hierarchy, with
a sprite superclass and different game objects as subclasses of this is a great way to
create game objects. You also discovered that games work by having a “game loop”
that repeatedly updates and draws items on the screen. You used the event mecha-
nism of pygame to capture keyboard input, and you used events to control an object
on the screen. You’ve seen that “artificial intelligence” can be created with a couple
of if conditions, and physics can be implemented using a few calculations. You also
implemented a start screen and a game screen to make a complete game experience.

Hopefully, you’ve also taken a few ideas of your own and used them to create some
more games.

Here are some points to ponder about game development.

Do all games work using a game loop?

Most games use a game loop. A text-based adventure will work by reading in what
you type and replying, but most modern games work with a loop.

Why are draw and update separate methods?

You might wonder why I separated the draw and update behaviors in the game.
Although they are separate methods, they always seem to be called together. Why not
have just one method (perhaps called do_game) which does both?

637What you have learned

The answer has to do with performance. For simple games like Cracker Chase, it’s
perfectly fine for the drawing and updating to take place at the same rate. However,
if you’re running on a low-performance platform, you may want to update the game
at a different rate from the rate you draw it. The reason for this is that people are
much more tolerant of the game display “flickering” than they are for changes in the
speed of a game update. If the game update slows down, it can cause problems with
collisions not being detected (for example, bullets might pass right through things
without the game noticing they had collided). For this reason, a game should sepa-
rate drawing and updating so that the two processes can be made to run at different
speeds if required.

How would I create an attract mode for my game?

Currently, our game just has two states, the start screen and the game screen. Many
games have an “attract mode” screen as well, which displays some gameplay. Creating
an attract mode screen is quite easy. We could make an “AI player” who moved the
cheese around the screen in a random way, and then just run the game with the ran-
dom player at the controls. We could add an “attract mode” behavior to the tomatoes
so that they were aiming for a point some distance from the player, to make the game
last longer in demo mode.

How could I make the gameplay the same each time the game is played?

The game uses the Python random number generator to produce the position of
the crackers, which means each time the game runs, the crackers are in a different
position. We can use the seed function from the Random module to give the Python
random number generator the same seed before each game. This would mean that
the crackers would be drawn and would respawn in the same sequence each time the
game was played. A determined player could learn the pattern and use this to get a
high score.

Is the author of the game always the best person at playing it?

Most definitely not. I’m often surprised how other people can be much better than me
at playing games I’ve created. Sometimes they even try to help me with hints and tips
about things to do in the game to get a higher score.

638 Index

Index
Numbers
0s and 1s, 31

Symbols
\\ escape sequence, 82
\’ escape sequence, 82
\” escape sequence, 82
\’ escape sequence, 82
* character, inclusion in arguments, 460
+ (addition), 29
== (equality) operator, 112, 125–126
> (greater than) operator, 112
>= (greater than or equals) operator, 112
< (less than) operator, 112
<= (less than or equals) operator, 112
* (multiplication), 29
!= (not equals) operator, 112
(()) (parentheses), 30, 33
' (single quote), entering, 81

A
\a escape sequence, 82
abstraction, 381, 437
acceleration, 626
accuracy versus precision, 92
Add Session menu, modifying, 337–340
add_session method, 316, 321–322
adding machine, 506
addition (+), 29
address book. See Contacts app
age, holding for contacts, 318
alarm clock, making, 128. See also clock; digital clock
algorithms, 227
and operator, 115, 117
append method, 215–224, 259
append mode, 242
application behaviors, implementing, 405–409

applications. See also data-processing applications
data design, 376–377
versus programs, 14

arguments
* character, 460
arbitrary number, 457–460
defaults in initializers, 299
naming, 182
and parameters, 176–179
positional and keyword, 180–181

arithmetic operator, 111
artificial intelligence, adding to sprites, 625–626
artificial intelligence (AI), 14
ASCII symbols, escape sequences, 82–83
assert statement, 471–472
assignment statements, using with variables, 74
“attract mode” screen, using with games, 637
attributes. See also data attributes; method attributes;

static class attributes; version attributes
adding, 306
__billing_amount, 343
confusion, 275
contacts app, 274
missing, 289
and values, 109

B
backslash (\) character, escape sequence, 82, 84
BaseHTTPRequestHandler class, 577, 590
bell, escape sequence, 82
billing amount, managing, 337–339
__billing_amount attribute, 343
bin function, 39–41. See also numbers
binary files, storing, 307
binary representation, 32
bits, 31
blitting, 602
block copy action, warning, 379
bool function, 107–108
Boolean expressions, 109–110. See also expressions
Boolean operations, 114–118

Index entries listed in gray are only found in
the PDF files for Part 3 available at
https://aka.ms/BeginCodePython/downloads.

https://aka.ms/BeginCodePython/downloads

639Index

Boolean values, 106–108, 138
Boolean variables. See also variables

creating, 106
doneSwap, 234

bounding boxes, 620
break statement, 157–159, 163, 168
breaking programs, 15
breakpoint, adding, 202–203
broadcast address, 551
BTCInput module, function references, 441–444
BTCInput.py source file, 201–202, 267
bubble sort algorithm. See sorting using bubble sort
Button instance, 509
bytes, 39

C
calculations, performing, 96–98
canvas, drawing on, 518–522, 525–526
carriage return, escape sequence, 82
cars, microcomputers, 23
catching exceptions, 326, 512
centigrade and Fahrenheit, converting between,

100–102, 515–517
check_version method, 342, 345
Cheese class, 614–615
cheese image, 601–602
cheese object, 609
chr function, 38
class hierarchies

explained, 381
protecting data in, 395–396
versus sets, 431–433
using, 435

class instances, setting up, 294–299
class properties, 332–336, 369–370
class references, 467–468. See also references and lists
class variables, validation and methods, 317–318
class versions, managing, 340–345
classes. See also superclasses and subclasses

advantages, 433
BaseHTTPRequestHandler, 577
BaseHTTPRequestHandler, 590
Cracker, 618
creating, 273–274
data attributes, 311–312
data storage, 384–386
designing with, 421–422
Dress, 378, 380, 383, 388
ElementTree, 565–567
Fashion Shop application, 434
game, 613, 617

HTTPServer, 577, 590
instances, 284
method attributes, 314–316
method overriding, 388–392
methods in, 368
Note, 365–366
Pants, 378, 380, 383
Secret, 329–331
Sound in pygame, 623
Sprite, 612, 618
static items, 437
StockItem, 380–381, 383–384, 387
storing contact details, 272–273
upgrading, 343
using as values, 466–470
webPageHandler, 588

classes hierarchy, storing data in, 384–386
clock, making, 110–111. See also alarm clock; digital

alarm clock
close method, 240
closing quote, missing, 33
code, documenting, 197
code security, 331
cohesion, 312–313
cohesive object, 368, 370, 435–436. See also

components
collision detection, pygame, pygame, 624
command shell. See IDLE Command Shell
commands

import, 58
randint, 58–60

comments
length, 71
using, 61–62
using with functions, 195–197

communication, 21
comparison operators, 111–113
components. See also cohesive object

versus objects, 435
self-contained, 410
user interface, 417–421
using, 435

computers
data-processing applications, 23
in devices, 23
and programs, 22

conditional statement layout, 123–124
conditions, 119
connections and datagrams, 561
Contact class. See also Time Tracker

creating, 298
hours_worked attribute, 315

640 Index

Contact class (continued)
initializer, 297
properties, 333
using, 273–276

Contact instance
attributes, 305
creating, 294, 299

Contact object, time tracker, 311
contacts. See also test contacts

Edit Contact item, 278
editing, 287–289
holding ages, 318
lists and references, 282–284
loading from files, 292
objects and references, 281–282
saving and loading, 293–294
saving in files, 289–291
storing in dictionaries, 303–304

Contacts app
class instances, 294–299
classes for details, 272–275
duplicate names, 277–278
prototype, 267–268
refactoring, 279–280
save and load, 293–294
starting, 266–267
storing details, 269–270

contacts.pickle file, opening, 290
continue keyword, using with loops, 158–159, 163, 168
count variable

using, 231
using with loops, 218
using with while loop, 160

countdown program, looping, 147
Cracker class, 618
cracker sprite, 618
crackers, catching, 620–622
crackers sprite, 609
Ctrl key. See keyboard shortcuts
customers

communicating with, 21
writing software for, 433

D
data

and information, 31–35, 41–42
loading using pickle, 292
storing in classes hierarchy, 384–386
storing in files, 238–239

data attributes. See also attributes
adding to classes, 311–312
protecting, 328–331, 368–369
using, 274

data design, Fashion Shop application, 396–401
data processors

programs as, 24–25
Python as, 25–30, 32, 51

data storage
bin function, 39
version management, 345

data storage app, creating, 304
data types, text and numbers, 35
datagrams

and connections, 561
defined, 553
fetching, 554
using, 568

data-processing applications, 23, 547. See also
applications

days, counting through, 255–256
debugger, 202–208
decimal library, 92
decisions, using to make applications, 129–133,

138–139
decorators, 319, 321
def, using with functions, 175
“defensive programming,” 148. See also programs
dependency injection, 470
design decisions, 434
designing with classes, 421–422
desktop, running Python, 63–64
devices, computers in, 23
dictionaries

access_control, 302
creating, 300–302
deleting entries, 302
“key:item,” 302
keys for items, 300–301, 307
managing, 302–303
returning from functions, 303
storing contacts, 303–304

digital alarm clock, making, 167. See also clock
dimensions, using with lists, 255
display elements, grouping in frames, 528–529
display_contact method, 346–347
display_image function, 167
Django framework, 590–591
DNS (domain name system), 561
do_add function, 512–513

641Index

documentation
viewing, 478–481
writing, 485

documenting code, 197
doneSwap Boolean variable, 234
dots, drawing in pygame, 600
double precision value, 92
double quote (”) character, escape sequence, 82
downloading Python, 7
draw_text function, 167
drawing on canvas, 518–522
drawing program, creating, 523–524
Dress class, 378, 380, 383, 388
duplicate names, 277–278

E
Easter Egg, 13
edit_contact function, 279, 289
editing contacts, 278, 287–289
editors

get_from_editor method, 534–535
load_into_editor method, 533–534
using, 499

egg timer, 61–62
ElementTree class, 565–567. See also XML (eXtensible

Markup Language)
elif keyword, 226–227
else part, adding to if construction, 125, 131
encrypted websites, 591
end of program, delaying, 64
end_game method, 634
EOL “End of Line,” 33
equality (==) operator, 112–114, 125–126
error checking, 55–56
error handling, GUI (Graphical User Interface), 512–513
error messages

appearance, 77–78
expressions, 28

errors. See also invalid user entry
assigning faults, 43
floating-point variables, 91

escape sequences, 82–83
eval function, 86
event handler function, GUI, 510
events

creating drawing programs, 523–524
and drawing, 518–522
pygame, 606–607
Tkinter, 522–523

except handlers, 156–157
exception error message, extracting, 325–326
exceptions

catching, 199, 326, 512
construction, 154
file handling, 248–249
handling, 156
loops, 155
and number reading, 154
raising and dealing with, 327–328
raising to indicate errors, 323–324
sockets, 556
testing for, 475–476
ValueError, 153

exit method, 630
expressions. See also Boolean expressions; lambda

expressions
addition and multiplication, 29
anatomy, 27
comparison operator, 111–112
error messages, 28
in programs, 48
working out, 28

Extension, installing for Visual Studio Code, 491–492

F
Fahrenheit and centigrade, converting between,

100–102, 515–517
failure, planning for, 157
failure behaviors, testing, 151
False and True values, 106–109, 115–119
Fashion Shop application

application behaviors, 405–409
class diagram, 380
classes, 434
data design, 376–377, 396–401
design decisions, 434
GUI (Graphical User Interface), 544–545
instrumented stock items, 402–405
item name, 387–388
object-oriented design, 376–379
objects as components, 409–410
overview, 374–376
__str__method in classes, 388–391
superclasses and subclasses, 379–381
version management, 392–393

FashionShop component
class, 411–412
features, 410

642 Index

FashionShop object. See also sets
classes, 421–422
stock data, 416–417
stock items, 414–416
user interface component, 417–421

faults
fixing, 249
testing for, 477

FDS (functional design specification), 20
file access, tidying up, 249–250
file associations, changing, 63–64
file errors, 257–258
file extensions, 63
file handling exceptions, 248–249
file server, connecting to, 582–583
files

close method, 240
open function, 239
overwriting, 240
reading from, 244–246
saving, 49–50
storing data, 238–239
write method, 240–242
writing into, 239–241, 260

filter on tags, 429–431
finally, using with exceptions, 248–249
find_contact function, 271–272, 277, 279, 289
firewall problems, 560
firstProg, naming, 50
Flask framework, 590–591
float and int, converting between, 98–99
float function, 95–96
floating-point numbers, 90–92
floating-point values

converting into integers, 99
converting strings to, 95–96
and equality, 113–114

floating-point variables, 92–94, 103
folders, programs in, 63
Font object, using with pygame, 630–633
for loop construction, 162–163

break statement, 163–166
continue statement, 163–166
displaying lists, 219–221
teletype printer, 184–185
tuples, 257
using with lists, 253–254
versus while loop, 230–231

format() method, using with strings, 348
fortune teller, 137
fraction library, 92
frames, using with display elements, 528–529

func function, 191
function calls, return values, 185–186
function references, 440–446
functions. See also iterator functions; methods; reus-

able functions; snaps framework
arguments, 457–460
bin, 39–41
bool, 107–108
calling functions, 174–175
chr, 38
converting into modules, 201–202
defining, 175
designing with, 188–189
do_add, 512–513
edit_contact, 279, 289
elements, 172
eval, 86
find_contact, 271–272, 277, 279, 289
float, 95–96
func, 191
get_treasure_location, 258–259
get_value, 186–188
get_weather_temp, 101
greeter, 172–173
help information, 195–197
input, 84–87, 107
int, 87–88, 96, 247
interactive help, 182
investigating, 172–173
isinstance, 178–179
join, 369
lambda expressions, 446–450
load_contacts, 292
load_sales, 246–247
local variables, 189–190
localtime, 109–111
make_test_data, 253
map, 369, 440
and methods, 126–127
new_contact, 269–270, 276
number input, 197–198
open, 239, 260
ord, 36–37
parameters, 176, 179–180
placeholders, 224–225
play_sound, 363
print, 51–57, 184
print_sales, 223–224
range, 163, 451
raw_input, 86
read_float, 197–198
read_float_ranged, 198–200

643Index

read_sales, 223–224
read_text, 194–195, 198, 268
readme, 461
real_number, 443
references, 440–446
return values, 186–187
returning dictionaries, 302
sales analysis program, 223–224
save, 251
save_contacts, 291
save_sales, 242–243
seed, 637
sleep, 60–61, 95, 167, 184–185
sort_high_to_low, 228
startswith, 272
str, 243
strings in, 209
“stub” versions, 239
sum, 460
super, 387
type, 285
using, 209
what_would_I_do, 183

G
game class, 613, 617
game consoles, 23
game loops, 636
games, benefits, 625. See also pygame
GET request, 585, 590
get_from_editor, method, 534–535
get_hours_worked method, 315
get_string function, 134–135
get_treasure_location function, 258–259
get_value function, 186–188
get_weather_temp function, 101
global variables, 190–193, 208. See also variables
graphical application, creating, 506–507
greater than (>) operator, 112
greater than or equals (>=) operator, 112
greeter function, 172–173
“greeter” program, making, 85
grid, laying out, 507–510
grid cells, spanning, 509–510
grid layout for GUI, 507–510
GUI (Graphical User Interface). See also Tkinter; user

interface
application, 544–545
versus Command Shell, 547
creating, 499–506
display elements in frames, 528–529

drawing on canvas, 525–526
drawing program, 523–524
editable StockItem, 529–536
error handling, 512–514
event handler, 510–511
Fahrenheit and centigrade, 515–517
grid layout, 507–510
Kivy, 547
Listbox selector, 537–543
mainloop, 511–512
message box, 514–515
multi-line text, 526
padding, 509
PyQT, 547
spanning grid cells, 509–510
sticky formatting, 508
Text object, 527–528

H
hello

attempt, 12
saying, 32–33

Hello, printing, 173
“hello world,” displaying in snaps, 66
help information, adding to functions, 195–197
help message, 59. See also interactive help
“High-Low” party game, 69
hosts and ports, 552
HTML (Hypertext Markup Language), 562, 568
HTTP (Hyper Text Transfer Protocol), 568
HTTP POST request, 585–589
HTTPServer class, 577

I
i variable name, 189–190
Ice-Cream Sales program, 213
IDLE command, 26
IDLE Command Shell. See also Python Command Shell;

Visual Studio Code
arbitrary arguments, 457–460
classes, 273–274
classes as values, 466–467
dictionaries, 300–302
eliminating save requests, 54
events and drawing, 518–522
exceptions, 324–325
file-server connection, 582–583
functions, 172–173
“greeter” program, 85

644 Index

IDLE Command Shell (continued)
versus GUI (Graphical User Interface), 547
“immutable,” 284–287
initializer, 295–297
join function, 362–363
lambda expression, 447–448
Listbox object, 537–539
lists, 215–217
map function and iteration, 356–361
message board, 585
method overriding, 388–390
network messages, 553–555
one-handed clock, 110–111
ord function, 37
print function, 52–53
properties, 334–335
protecting data attributes in classes, 329–331
pygame, 594–598
random library, 58–60
running programs, 46–50
server connection, 573–574
sets, 423–425
string formatting, 348–349
text and numeric variables, 80
Text object, 527–528
text representation, 37
user interface, 500–504
variables, 75
version management, 344–345
yield statement, 452–453

IDLE debugger, 202–208
IDLE editor, debugger, 203–208
IDLE environment

alternatives, 15
configuring, 54
creating programs, 46–50
opening, 10–13

if conditions, nesting, 127–128
if construction, 125

combining statements, 119–123
comparing strings, 125–126
conditions, 119
definition, 122
else part, 125, 131
fortune teller, 137
limit, 139
using, 118–119

images, displaying in snaps, 67–68
images in pygame

file types, 601–602
loading into games, 602–604
moving, 604–605

“immutable,” discovering, 284–287
immutable behavior, 257, 305–307
import command, 58
import statement, 201–202
indenting text, 121–122
index values, inadequacy, 252–253
index.html page, 582–583
information and data, 31–35, 41–42
inheritance, 379, 381–384
__init__ initializer method, 295–299, 311
initializer method, 295–297, 306
InitName class, 296–297
InitPrint class, 295
input

and output, 24–25, 51–54
validating, 149

input function
“greeter” program, 85
and Python versions, 86
return values, 185–186
using, 107
using to read in text, 84–85

installer program, 8–10
installing Visual Studio Code, 490–492
instances, of classes, 284
instrumented stock items, 402–405
int and float, converting between, 98–99
int data type, immutability, 286
int function, 87–88, 96, 152–153, 247
integer division, 94–95
integer values, converting strings to, 87
interactive help, 182. See also help message
Internet ports and hosts, 552
Internet protocols, 552, 567
interpreting programs, 30
Interrupt Execution, 144
invalid number entry, detecting, 152–154
invalid syntax error, 55
invalid user entry, handling, 147–149. See also errors
IP addresses, 557–558, 561
isinstance function, 178–179
iteration, 356–362, 371
iterator, 369
iterator functions, yield statement, 451–456. See also

functions; methods

J
join function, 369
join method, 361–363
JPEG format, 601

645Index

K
keyboard shortcuts

interrupting messages, 558
New Window, 46
stopping programs, 144, 153, 156, 193

keyword arguments, 180–181
killer tomato, adding with pygame, 609, 625–628
Kivy GUI (Graphical User Interface), 547

L
lambda expressions, 446–450, 484. See also

expressions
len function, 231, 259
less than (<) operator, 112
less than or equals (<=) operator, 112
libraries

decimal, 92
fraction, 92
function names, 70
os, 240
path, 240
putting functions in, 209
pydoc, 196
Pygame, 65
random, 57–60
snaps, 66–69
time, 60–61, 109

line feed/new line, escape sequence, 82
lines, drawing in pygame, 594–598
Listbox object, 537–539
listen_address tuple, 554
list-reading loop, 218–219
lists

containing lists, 252
creating, 215–217
dimensions, 255
displaying using for loop, 219–221
function references, 445–446
initializing with test data, 228
lookup tables, 255–256
and loops, 230–231
reading in, 218
recording with save function, 251
and references, 282–284
sorting high to low, 228–233
storing contact data, 269–270
sum function, 460
versus tables of data, 251
and tuples, 256–257

using, 260–261
week_sales, 252

literal values, 84
load and save behaviors, 289, 293–294
load method, 413–414
load_contacts function, 292
load_into_editor method, 533–534
load_sales function, 246–247
local variables, 189–190. See also variables
localtime function, 109–111
logic, working with, 128
logic errors, preventing, 77
lookup tables, lists as, 255–256
loop counting, 254
loops

best practices, 168
breaking out of, 157–159
continue keyword, 158–159
continuous, 144–145
countdown program, 147
exceptions, 155
faults, 150
list-reading, 218–219
and lists, 230–231
messages, 145
nesting, 237–238
print statements, 145–146
range function, 168
repeating, 159–160
selection program, 147
using with tables, 253–254
validating input, 149

lower() method, 126–127

M
mainloop, creating for GUI, 511–512
make_page method, 589
make_test_data function, 253
map function, 355–361, 369, 440
markup languages, 568
Mary’s Fashion Shop. See Fashion Shop application
matching names, 272
memory, adding via variables, 74
menu items, adding, 238–239. See also user menu
message board, 584–585
message box, displaying in GUI, 514
messages

interrupting, 558
printing from escape sequences, 84
printing from programs, 52
sending to computers, 557–558

646 Index

method attributes, creating for classes, 314–316.
See also attributes

method overriding, 392, 437
methods. See also functions; protected methods; static

methods; validation and methods
add_session, 316, 321–322
blit, 602–603
check_version, 342, 345
in classes, 368
close, 240
display_contact, 346–347
end_game, 634
exit, 630
format(), 348
and functions, 126–127
get_from_editor, 534–535
get_hours_worked, 315
initializer, 295–297
load, 413–414
load_into_editor, 533–534
lower(), 126–127
make_page, 589
overriding in classes, 388–392
play_note, 364
recvfrom, 554–555, 557–558
render, 631
reset, 618
sendto, 555, 557–558
session_report, 355, 361
setter, 333
__str__, 369
tick, 605
upper(), 126–127
valid_session_length, 320–321
write, 240–242

min and max values, 200
mobile phones, microcomputers, 23
mode strings, 242
modules

converting functions to, 201–202
detecting execution as programs, 463–464
features, 460–461
importing from packages, 466–470
making, 465
putting functions in, 209
running as programs, 462, 483
socket, 553–555
unittest, 472–477

MTU (maximum transmission unit), 568
multi-line text, entering in GUI, 526–528. See also text
multiplication (*), 29
music player, creating, 363–367

N
\n (new line) character, 82, 241, 260
name attributes, 274
names, matching, 272
naming

arguments, 182
programs, 50
variables, 76–77

“Nerves of Steel” party game, 69
nesting

if conditions, 127–128
loops, 237–238

network communication, 550–551
network layers, 551
network messages, sending, 552–555
network problems, 551–552, 560
networking

address messages, 550–551
connections and datagrams, 561
hosts and ports, 552
routing packets, 558–559
sending messages, 557–558

networks, broadcast address, 551
networks and addresses, 561
new line (\n) character, 82, 241, 260
new_contact function, 269–270, 276
None value, 187, 208
not equals (!=) operator, 112
not operator, 115
Note class, 365–366
notes, playing, 363
number input function, 197–198, 202
numbers. See also bin function

adding to strings, 34
converting to text, 38
and exceptions, 154
floating-point, 90–92
reading, 88
storing, 90
strings and integer values, 87
and text, 35
whole and real, 89

numeric values and text, 80

O
object-oriented design, 376–379, 436
objects

cohesion, 312–313
as components, 409–410

647Index

versus components, 435
features, 484
initializer methods, 306
references, 306
self-contained, 368
storage in memory, 306
using, 284

one-handed clock, making, 110–111
open function, 239–240, 260
operands and operators, 27
or operator, 115
ord function, 36–37. See also text
os library, 240
output and input, 24–25, 51–54
ovals, drawing, 526
overriding in classes. See method overriding
overwriting files, 240

P
packages

creating, 464–465
importing modules from, 466–470
moving, 484

packets, routing, 558–559
padding, 509
page.html page, 582–583
Pants class, 378, 380, 383
parameters

and arguments, 176–179
default values, 181–182
in functions, 179–180
using, 208
as values, 183

parentheses (()), 30, 33
party games, making, 69, 78–79
party guests, reading names, 221
party planning, 18
pass keyword, 225
path library, 240
performance, improving, 233–234
Petzold, Charles, 31–32
piano keys, mapping notes, 364
.pickle extension, 290
pickling, 289–292
pip program, 65
pizza order, calculating, 99–100
placeholder functions, 224–225
play_note method, 364
play_sound function, 363
player sprite, 614–617. See also sprites

PNG format, 601
polymorphism, 394–395
ports and hosts, 552
positional arguments, 180–181
POST request, 585–588, 590
PowerShell command prompt, 478–482
precision versus accuracy, 92
Preferences, selecting, 54
prices dictionary, 300–301
print function

default behavior, 184
Python versions, 56–57
using, 51–57

print statements
conditions, 123–124
using, 81–82
while construction, 143

print_sales function, 223–224
print_times_table function, 177–181
printing messages, 84
problems, solving, 20–21, 42
program context, checking, 463
program testing

assert statement, 471–472
elements, 470–471
importance, 253, 545
unittest module, 472–476

programming
concepts, 19
languages, 4
and party planning, 18–19
and problems, 19–21

programming languages, 41–42, 287
programs. See also data-processing applications;

“defensive programming”
versus applications, 14
breaking, 15
and computers, 22
as data processors, 24–25
delaying end of, 64
errors, 43
expressions in, 48
interpreting, 30
naming, 50
and recipes, 19, 25
refactoring into programs, 221–222
running, 46–50
saving, 49–50
stopping, 144, 153, 156, 193
testing, 253
understanding, 100

properties, using with classes, 332–336, 369–370

648 Index

property code, failures, 336
protected methods, 331. See also methods
protecting

data attributes, 328–331, 368–369
data in class hierarchy, 395–396

prototyping, 21, 267–269
Pycharm, 499
pydoc library, 196
pydoc program, 478–483
pygame

acceleration, 626
“attract mode” screen, 637
blit method, 602–603
bounding boxes, 620
catching crackers, 620–623
collision detection, 624
cracker sprite, 618
draw and update behaviors, 636–637
drawing lines, 594–598
drawing text, 630–633
ending games, 634
events, 606–607
frame rates, 605
game loops, 608–609
image file types, 601–602
killer tomato, 625–628
loading images, 602–604
making images move, 604–605
player sprite, 614–617
render method, 631–632
sameness of gameplay, 637
scoring games, 635
Sound class, 623
sprite instances, 619–620
sprites, 609–614
start screen, 629–633
starting, 594–598
tick method, 605
user input, 606–608

Pygame library, adding, 65
PyQT GUI (Graphical User Interface), 547
Python

conversation, 26–27
as data processor, 51
downloading, 7
origins, 4
overview, 4
as programming language, 71
as scripting language, 30
shutting down, 630
starting, 10–13

tools, 6–7
versions, 4–5

Python Command Shell, 26, 47, 70. See also IDLE
Command Shell

Python libraries
decimal, 92
fraction, 92
function names, 70
os, 240
path, 240
putting functions in, 209
pydoc, 196
Pygame, 65
random, 57–60
snaps, 66–69
time, 60–61, 109

Python versions
and input function, 86
integer division, 94–95
print function, 56–57

Python web server, 577–579

Q
quotes and strings, 81

R
\r escape sequence, 82
randint command, 58–60, 137
random library, 57–60
random number generation, 618, 637
range function

iterator function, 451
using with for loop, 163, 168

raw_input function, 86
read_float function, 197–198
read_float_ranged function, 198–200
read_sales function, 223–224
read_text function, 194–195, 198, 268
reading

from files, 244–246
sales figures, 246–247

readme function, adding to BTCInput, 461
real numbers, 89–92
real_number function, 443
recipes and programs, 19, 25
recursion, 175
recvfrom method, 554–555, 557–558

649Index

refactoring
find_contact function, 280
programs, 279–280

refactoring programs, programs, 221–223
references and lists, 282–284. See also class references
references to functions. See function references
render method, 631
repeating

loops, 159–160
sequences of statements, 142–143

reset method, pygame, 618
return statement

find_contact function, 280
using, 208
using with functions, 186–187, 195

reusable functions, 193–194. See also functions
routing packets, 558–559
RSS (Really Simple Syndication/Rich Site Summary),

562, 564
running

programs, 46–50, 71
Python from desktop, 63–64

S
sales, total and average, 236–237. See also week_sales

list
sales analysis program, functions, 223–224
sales figures

reading, 246–247
writing, 242–243

save and load behaviors, 289, 293–294
save function, recording lists, 251
save requests, eliminating, 54
save_contacts function, 291
save_sales function, 242–243
saving

contacts, 289–291
files, 49–50

scripting language, Python as, 30
search name, removing white space, 271
Secret class, 329–331
secure code, 331
seed function, 637
selection program, looping, 147
self parameter

StockItemEditor, 531–532
using, 295–296, 315, 368
validation and methods, 320

“Self-Timer” party game, making, 78–79
sendto method, 555, 557–558

serializers, 293
server handler, 583
server program, 578–579
session class, 351–353
session list, 355
session record, adding, 354
session tracking, 350. See also Time Tracker

join method, 361–363
map function, 355–361
specification, 350–353

session_report method, 355, 361
sets. See also FashionShop object; values

versus class hierarchies, 431–433
creating from strings of text, 427–429
investigating, 422–426
and tags, 426–432
using, 435

setter method, 333
shadowing, 192
shell, 11, 51
SimpleHTTPRequestHandler, 583
single quote (')

entering, 81
escape sequence, 82

sleep function, 60–61, 95, 167, 184–185
slicing, 581–584
snaps framework. See also functions

get_string function, 134–135
ride selector, 136

snaps library
digital clock, 167
display_image function, 167
draw_text function, 167
images, 67–68
input function, 134–136
in programs, 69, 71
sounds, 68
text, 66–67
weather, 101

socket module, 553–555
socket-based server, 572–576
sockets, exceptions, 556
software, life-threatening capabilities, 24
sort_high_to_low function, 228
sort_pass variable, 232–233
sorting using bubble sort

alphabetizing, 234
average sales, 236–237
completing, 237–238
highest values, 235–236
list with test data, 228
listing high to low, 228–233

650 Index

sorting using bubble sort (continued)
listing low to high, 234–235
lowest values, 235–236
total sales, 236–237

Sound class, 623
sounds, making in snaps, 68
Source check box, 206
specifications, 20–21, 43
Sprite class, 612, 618
sprite superclass, 611
sprites. See also player sprite

artificial intelligence, 625–626
creating, 609–614
instances, 619–620
intersecting, 620–621
physics, 626–627
timing, 628

start screen, adding to game, 629–630
starting Python, 10–13, 26
startswith function, 272
statements

combining, 119–121
repeating sequences, 142–143
testing behaviors, 475

static class attributes, 370. See also attributes
static items, 437
static methods, 321, 368. See also methods
Step button, 207
sticky formatting, 508
stock, adding to items, 407–408
stock data, listing, 416–417
stock items

creating, 406–407
editing, 536
finding, 415–416
selecting, 541–542
selling, 409
storing, 414–415

StockItem class, 380–381, 383–384, 387, 529–536
StockItem component, 410
StockItem selector, 539–543
StockItemEditor, creating, 531–532
stopping programs, 193
storing data. See pickling
storyboarding, 212–213, 237
str function, 243
__str__ method in class, 346–349, 369, 388–391
string formatting, 348–349
string literal, 33
strings

adding numbers, 34
comparing in programs, 125–126

converting into floating-point values, 95–96
converting to integer values, 87
in functions, 209
marking start and end, 81–82
multiplying by numbers, 35
and number variables, 80
and quotes, 81
reading in snaps framework, 134
subtracting, 34

stub functions, 224, 239
suite, 122–123
sum function, 460
super function, 387
superclasses and subclasses. See also classes

abstraction, 381
data in classes hierarchy, 384
data protection in class hierarchy, 395–396
inheritance, 382–384
item names, 387–388
method overriding, 388–392
polymorphism, 393–394
__str__ method in class, 388–392
using, 379–381
version management, 392–393
using, 434, 436

syntax error, 55–56

T
\t escape sequence, 82
tab, escape sequence, 82
tables, using loops, 253–254
tables of data, storing, 251–255
tags

filter on, 429–431
and sets, 432

TCP (Transmission Control Protocol), 561
telephone number, storing, 269
teletype printer, creating, 184–185
test contacts, generating, 455–456. See also contacts
test data generator, 453–455
testing programs

assert statement, 471–472
elements, 470–471
importance, 253, 545
unittest module, 472–476

tests, creating, 476–477, 485
test.txt file, 241–242
text. See also multi-line text; ord function;

variables and text
converting numbers to, 38
displaying in snaps, 66–67

651Index

drawing in pygame, 630–633
indentation, 121–122
and numbers, 35
reading with input function, 84–85
working with, 32–33

text input function, 193–194
Text object, 527–528
time library, 60–61, 109
Time Tracker. See also Contact class; session tracking

__init__ initializer method, 311
__str__method in class, 346–347
class properties, 332–336
class variables, 317–318
class versions, 340–345
cohesive object, 312–313
Contact object, 311
creating, 310
data attribute for class, 311–312
evolve class design, 337–340
exceptions, 323–324
get_hours_worked method, 315–316
join method, 361–363
map function, 355–361
method attributes for class, 314–316
play_sound function, 363–367
protected methods, 331
protecting data attributes, 328–331
raise exception for error, 323–326
session tracking, 350–355
status messages from validation method, 321–322
string formatting, 348–349
validating values, 318–321
validation for methods, 316–317
version management, 344–345

time value table, 110
time_text variable, 88
Times Table Tutor, 161, 166
Tiny Contacts app. See Contacts app
Tkinter. See also GUI (Graphical User Interface)

considering, 547
events, 522–523
GUI (Graphical User Interface), 499–506
user interface, 500–504

tomato, adding with pygame, 625–628
tools, downloading and installing, 6–7
total variable, 74–75
True and False values, 106–109, 115–119
try construction, 156–157
try.except.finally construction, 249
tuples

listen_address, 554
note and duration values, 365
using, 257–261

type function, 285
typing errors and testing, 77–78

U
UDP (User Datagram Protocol), 552–555
UNICODE, 83
unittest module, 472–477
Untitled program, running, 47–49
upper() method, 126–127
URL (Uniform Resource Locator), 579–580
urlopen object, 562
user authentication, 591
user input, testing, 132–133
user interface. See also GUI (Graphical User Interface)

designing, 129–130
implementing, 130–131

user interface component, 417–421
user menu, creating, 225–227. See also menu items

V
valid_session_length method, 320–321
validating input, 149, 151
validation and methods. See also methods

add_session, 316
adding to methods, 316–326
class variables, 317–318
decorators, 321
returning status messages, 321–322
static method for values, 318–321

ValueError exception, 153
values. See also sets

and attributes, 109
comparing, 111–112
holding, 31
working with, 287

van Rossum, Guido, 5
variables. See also Boolean variables; global variables;

local variables
assignment statements, 74
creating, 285
explained, 74
floating-point, 92–94
identifying, 88
length of names, 103
limitations, 214–215
naming, 76–77
overwriting, 103
storing, 90
swapping values, 229–233
working with, 75

652 Index

variables and text. See also text
escape characters, 82
numeric values, 80
working with, 79

version attributes, adding to classes, 341. See also
attributes

version control, 293
version management

Fashion Shop application, 392–393
Fashion Shop program, 392–393
implementing, 344–345, 369

version numbers, checking, 342
Visual Studio Code. See also IDLE Command Shell

Community Edition, 499
debugging program, 494–498
editors, 499
installing, 490–492
interpreter, 498
program file, 493–494
project folder, 492–493

W
weather conditions, displaying, 102
weather data, 566
weather helper, 136–137
weather snaps, 101
web applications, 590
web servers, 575–576, 591
web users, getting information from, 584–589
web-based data, 562–566
webPageHandler class, 588
webpages

features, 590–591
making from Python code, 589
reading, 562
serving from files, 579–584

websites
Django framework, 590
encryption, 591
Flask framework, 590
Kivy GUI (Graphical User Interface), 547
Pygame library, 65
PyQT GUI (Graphical User Interface), 547
security, 591
tools, 7
US National Weather Service, 101
Visual Studio Code, 490
Windows PC version, 7–9
Wireshark program, 591

week_sales list, 252. See also sales
what_would_I_do function, 183
while construction

versus for loop, 230–231
looping, 155
using, 142–147, 168, 195

white space, removing from search name, 271
whole numbers, 89
windows, opening, 46
Windows PC version, 7–9
wireless devices, 567
Wireshark program, 591
with construction, 249–250, 261
write method, 240–242
writing into files, 260

X
XML (eXtensible Markup Language), 562–565, 568.

See also ElementTree class

Y
yield statement, iterator functions, 451–456

	Contents
	Intro
	Programming fundamentals
	1 Starting with Python
	What is Python?
	Python origins
	Python versions

	Build a place to work with Python
	Get the tools
	Python for Windows PC

	Start Python
	What you have learned

	2 Python and Programming
	What makes a programmer
	Programming and party planning
	Programming and problems
	Programmers and people

	Computers as data processors
	Machines and computers and us
	Programs as data processors
	Python as a data processor

	Data and information
	Work with Python functions
	The ord function
	The chr function
	Investigate data storage using bin

	What you have learned

	3 Python program structure
	Write your first Python program
	Run Python programs using IDLE
	Get program output using the print function

	Use Python libraries
	The random library
	The time library

	Python comments
	Code samples and comments

	Run Python from the desktop
	Delay the end of the program

	Adding some snaps
	Adding the Pygame library
	Snaps functions

	What you have learned

	4 Working with variables
	Variables in Python
	Python names

	Working with text
	Marking the start and end of strings
	Escape characters in text
	Read in text using the input function

	Working with numbers
	Convert strings into integer values
	Whole numbers and real numbers
	Real numbers and floating-point numbers
	Convert strings into floating-point values
	Perform calculations
	Convert between float and int

	Weather snaps
	What you have learned

	5 Making decisions in programs
	Boolean data
	Create Boolean variables
	Boolean expressions
	Comparing values
	Boolean operations

	The if construction
	Nesting if conditions
	Working with logic

	Use decisions to make an application
	Design the user interface
	Implement a user interface
	Testing user input
	Complete the program

	Input snaps
	What you have learned

	6 Repeating actions with loops
	The while construction
	Repeat a sequence of statements using while
	Handling invalid user entry
	Detect invalid number entry using exceptions
	Exceptions and number reading
	Handling multiple exceptions
	Break out of loops
	Return to the top of a loop with continue
	Count a repeating loop

	The for loop construction
	Make a digital clock using snaps
	What you have learned

	7 Using functions to simplify programs
	What makes a function?
	Give information to functions using parameters
	Return values from function calls

	Build reusable functions
	Create a text input function
	Add help information to functions
	Create a number input function
	Convert our functions into a Python module
	Use the IDLE debugger

	What you have learned

	8 Storing collections of data
	Lists and tracking sales
	Limitations of individual variables
	Lists in Python
	Read in a list
	Display a list using a for loop

	Refactor programs into functions
	Create placeholder functions
	Create a user menu

	Sort using bubble sort
	Initialize a list with test data
	Sort a list from high to low
	Sort a list from low to high
	Find the highest and lowest sales values
	Evaluate total and average sales
	Complete the program

	Store data in a file
	Write into a file
	Write the sales figures
	Read from a file
	Read the sales figures
	Deal with file errors

	Store tables of data
	Use loops to work with tables

	Use lists as lookup tables
	Tuples
	What you have learned

	Advanced programming
	9 Use classes to store data
	Make a tiny contacts app
	Make a prototype
	Store contact details in separate lists
	Use a class to store contact details
	Use the Contact class in the Tiny Contacts program
	Edit contacts
	Save contacts in a file using pickle
	Load contacts from a file using pickle
	Add save and load to Tiny Contacts
	Set up class instances

	Dictionaries
	Create a dictionary
	Dictionary management
	Return a dictionary from a function
	Use a dictionary to store contacts

	What you have learned

	10 Use classes to create active objects
	Create a Time Tracker
	Add a data attribute to a class
	Create a cohesive object
	Create method attributes for a class
	Add validation to methods
	Protect a data attribute against damage
	Protected methods

	Create class properties
	Evolve class design
	Manage class versions

	The __str__ method in a class
	Python string formatting

	Session tracking in Time Tracker
	The Python map function
	The Python join method

	Make music with Snaps
	What you have learned

	11 Object-based solution design
	Fashion Shop application
	Application data design
	Object-oriented design
	Creating superclasses and subclasses
	Data design recap
	Implement application behaviors
	Objects as components

	Create a FashionShop component
	Create a user interface component

	Design with classes
	Python sets
	Sets and tags
	Sets versus class hierarchies

	What you have learned

	12 Python applications
	Advanced functions
	References to functions
	Use lambda expressions
	Iterator functions and the yield statement
	Functions with an arbitrary number of arguments

	Modules and packages
	Python modules
	Add a readme function to BTCInput
	Run a module as a program
	Detect whether a module is executed as a program
	Create a Python package
	Import modules from packages

	Program testing
	The Python assert statement
	The Python unittest module
	Create tests

	View program documentation
	What you have learned

	Useful Python (Digital-only)
	13 Python & Graphical User Interfaces
	Visual Studio Code
	Install Visual Studio Code
	Install the Python Extension in Visual Studio Code
	Create a project folder
	Create a program file
	Debug a program
	Other Python editors

	Create a Graphical User Interface with Tkinter
	Create a graphical application
	Lay out a grid
	Create an event handler function
	Create a mainloop
	Handle errors in a graphical user interface
	Display a message box
	Draw on a Canvas
	Tkinter events
	Create a drawing program
	Enter multi-line text
	Group display elements in frames
	Create an editable StockItem using a GUI
	Create a Listbox selector
	An application with a graphical user interface

	What you have learned

	14 Python programs as network clients
	Computer networking
	Consume the web from Python
	Read a webpage
	Use web-based data

	What you have learned

	15 Python programs as network servers
	Create a web server in Python
	A tiny socket-based server
	Python web server
	Serve webpages from files
	Get information from web users

	Host Python applications on the web
	What you have learned

	16 Create games with Pygame
	Getting started with pygame
	Draw images with pygame
	Image file types
	Load an image into a game
	Make an image move

	Get user input from pygame
	Create game sprites
	Add a player sprite
	Control the player sprite
	Add a Cracker sprite
	Add lots of sprite instances
	Catch the crackers
	Add a killer tomato

	Complete the game
	Add a start screen
	End the game
	Score the game

	What you have learned

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

